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Why am | doing this?

Because if we don’t study the past we will screw up the future!
Because if we learn from the past we will invent the future faster!
Because there is a lot of snake oil out there as well as good ideas

that we have forgotten or never knew about!

...and because I'm into software archaeology :-)
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Before we start... a word from the wise

A reminder from Fred. P. Brooks’ ¥ No Silver Bullet - essence and accidents of
software engineering”,1986

There is NO silver
bullet!
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lLanguage disclaimer...

- ITam NOT any programming language bigot, expert or evangelist.
* Tam a (legacy) C++ programmer (actually Symbian OS C++) that turned to Ruby.
* I enjoy using C++ for getting to the metal.

* I've taught ‘C’ to students and professionals because it is so basic (and blunt:-) and thus
helps explain how things work.

T am also very interested in Virtual Machines, Operating systems internals, languages and
runtimes in general

..... even in the new ISO C++0x spec sometimes :-P
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My experience with Ruby

+ I was introduced to Ruby during a Python seminar at ACCU 2006 !!
+ First got involved in ‘skunkworks” while at Symbian circa 2007

+ Ported in 2007 /2008 with Pragmaticomm the Ruby 1.9.0.0 VM and Ruby

1.9.1p1 VM and some extensions (about 120 kLoc) to Symbian OS v9.1 (for Nokia’s
Symbian Research dept.) --R.I.P

* I've used Ruby for mobile programming, text filtering, classification,
recommender systems, genetic algorithm and web app work (but not
Rails:-).

...s0 I'm no expert, ok!
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The diamond shape of computer architecture

I am intrigued by a 2004 E.I.
Brooks speech where he
discussed how computer
architecture since the 30s
has followed a diamond

shape in terms of the ideas
explored and finally
established in the
marketplace

http:/ / pages.cs.wisc.edu/ ~arch/ www /brooks.html

rtsp:/ / vstream.acm.org/ FredBrooks / FredBrooks768k /
FredBrooksFull768K.mp4

check out mins 13:00 -17:00

f 30s

Divergence of ideas

mainframes

oy exploration of ideas
minis

micros, PCs

Convergence of ideas

<
2004, he correctly

predicted GPGPUs ?

! s

what comes next....
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The diamond shape of computer architecture

“mainframes + terminals”

VLSI, Sol, SoC,
better tooling, packaging
economies of scale, etc

\4

“cloud computing + mobile terminals
, browser based clients”

T 30s

Divergence of ideas

mainframes

o exploration of ideas
minis

micros, PCs
Convergence of ideas

<
2004, he correctly

predicted GPGPUs

cloud computing

perhaps? :-)
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So what about programming?

The striking similarity between the past and the
future of computer architecture makes you think...
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So what about programming?

The striking similarity between the past and the
future of computer architecture makes you think...

...are we going back to equivalents of punch-cards
and programming for batch processing?!!! ; o)
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Relax!

Actually many programming languages were
designed with humans in mind.

But machines were not ready, so we had to revert
to programming that was machine efficient
rather than programmer efficient.
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Consider this map

VMs, JITC, HW acceleration ,etc

_

Programmer Holy Grail territory
efficiency Silver Bullet
Application specific
trade-off line framewaorks, tooling
Program efficiency
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A brief imeline of e programming languages

Information Processing

Language I/1I 1954- 1958

Fortran 1954- 1956
ALGOL 1958
COBOL 1959

LISP 1956-1959
Simula 1962-1967
BASIC 1964

BCPL 1967

Logo 1968

‘B’ 1969

Pascal 1970
Smalltalk 1972 - 1980
SQL 1972

Prolog 1972

‘C"1972

Modula 1975

CwC, C++ 1980 -1983
Object Pascal 1986

Objective-C 1986

Self 1986 - 1995, 2006
Perl 1987

Erlang 1987 - 1993
Haskell 1990

Python 1989 - 1991
AppleScript 1989 - 1993
StrongTalk 1993 - 1996
Visual Basic 1991

Java 1995

Ruby 1995

PHP 1995

LiveScript 1995
{IDE1990

Scala 2002-2006
Clojure 2007

Groovy 2007

Go 2009

CoffeeScript 2009
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Spot a pattern?
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Spot a pattern?

let me help you:-)

Pragmaticomm

Information Processing
Language 1954- 1958
Fortran 1954- 1956

ALGOL 1958
COBOL 1959

LISP 19564959

‘B’ 1969
Pascal 1970
malltalk 1972 - 1980
972
Prolog 172
‘C" 1972
Modula 1975
CwC, C++ 1980 -19
Object Pascal 1986

jective-C 1986
Self 1986 1995, 2006
Perl 1987
Erlang 1987 - 199
Haskell 1990
Python 1989 - 1991
AppleScript 1989 - 1993
StrongTalk 1993 - 1996
Visual Basic 1991
Java 1995
Ruby 1995
REIESII9S
LiveScript 1995
(D00
Scala 2002-2006
Clojure 2007
Groovy 2007
Go 2009
CoffeeScri

You can also observe this on O'Reilly’s
‘History of Programming Languages” Map
http:/ / oreilly.com /news/ graphics/

prog_lang_poster.pdf

So are we going
? back to the ideas
. of LISP and

Smalltalk?!

We will never ever get rid of
Fortan and C of course :-)
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Smalltalk aﬂd RUby (some characteristics)

Smalltalk

® Object oriented (all the way)

® Dynamically typed

® Strongly typed

® Interpreted and/or executed in VM
® Garbage collected

® Reflective

® Extensible

® Cross-platform

® Smalltalk is typically written in itself
® Has only 5 reserved keywords

® No control constructs

® Keyword syntax

® Code blocks are objects

® Makes extensive use of REPL

® Makes use of a persistent image

® Very advanced VMs

Ruby

Ruby is a genuine object-oriented language
The result of every expression is an object
Objects are garbage collected

Like with Smalltalk and Objective-C, objects
respond to messages

Such messages contain a method’s name
together with the parameters that the method
may need

Ruby is a single inheritance language

Classes can include the functionality of any
number of ‘mixins’

Ruby is a dynamic (late-binding) language
There is access control in Ruby

You can use curly braces {} if you want to :-)
(because it is important:-)

Ruby syntax is easy, pleasant and familiar to
most

I am not an expert but they look like they have too many things in common
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In Smalltalk, the language and the IDE are
traditionally coupled so that the IDE itself
can be manipulated in Smalltalk by every
programmer while working on a project.
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In Smalltalk, typically the state of the
running program and the IDE are saved
(and executed) as one image file (of
bytecode, source, docs and metadata).
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Smalltalk environments

File System Browse Debug Painter

B85 8

visualnc.im created at

being source code.

The hierarchy view is a bit different from the standard view. The
leftmost pane is the hierarchy. The next one is a list of packages - a
class can have code belonging to multiple packages, and not all of
them are necessarily loaded all of the time. The final two panes are the
same as usual: method categories and methods, with the lower pane

Pragmaticomm

don’t you want some for Ruby?
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Software 1s all about people and economics

Economics have changed

® Programmer time is more expensive

VMs, JITC, HW ® CPU time is cheaper
Programmer Holy Grail ® More functionality yields higher
efficiency _ territory .
Application specific system complexity that leads to more

entropy which leads to higher cost
e Shorter time to market is vital

e
Programmers have changed

frameworks, ® Programmers care less
® They have more things to do and

info to assimilate

trade-off line

Program efficiency

More than ever before, it is that the fewer the people, the better the quality of the
code and cheaper the cost of the product. So they need to be hyper productive.
One way to achieve this, is with better suited programming languages.
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Machine vs Programmer etficiency moth needed)

Traditionally program
efficient languages have
adopted static binding and
the edit-compile-link-
execute cycle into
programer lives. They
execute as native
instructions on a CPU.

Program efficiency

Programmer efficient
(general purpose)
languages have usually
opted for late binding and
read-evaluate-print-loop
interactivity which
Smalltalk took to the
extreme. They execute
under an interpreter or
virtual machine which
typically slows them down.

Programmer efficiency

... of course Fortran is a different story :0)
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Evolution

As computer hardware evolved and improved
so have Virtual Machines since the 50s
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Evolution

As computer hardware evolved and improved
so have Virtual Machines since the 50s

There has been a lot of top notch work to improve
and optimise VMs, due to LISP, Smalltalk and Self
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Evolution

As computer hardware evolved and improved
so have Virtual Machines since the 50s

There has been a lot of top notch work to improve
and optimise VMs, due to LISP, Smalltalk and Self

A great amount of VM state of the art has ended up
in Smalltalk and especially Java VMs these days
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Evolution

As computer hardware evolved and improved
so have Virtual Machines since the 50s

There has been a lot of top notch work to improve
and optimise VMs, due to LISP, Smalltalk and Self

A great amount of VM state of the art has ended up
in Smalltalk and especially Java VMs these days

So is it that to invent the future for Ruby we need
to look back into the success and failure of the
Smalltalk family?

Monday, 20 June 2011



Pragmaticomm

Then why do we use Ruby ?

Smalltalk which is still alive and kicking in
various advanced, enterprise, embedded and
mission critical systems, could be characterised
as “disruptive technology” that didn’t “cross the
chasm”. This was partly due to politics, business
decisions and the available technology at the
time of its introduction.

With Ruby we’ve been luckier because we
avoided the politics and both technology and
people were ready for its acceptance.

Ironically, Java is one of the reasons why
the best Smalltalk implementations and
research from IBM, OTI and Sun were
(mostly) abandoned to later fuel JVMs !!!
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Information Processing
Language I/1I 1954- 1958
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Support for high

Concurrency
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Of Moore’s law and GHz speeds

16,000,000
1,000,000 Bl Dual-Core Itanium 2 i / “The Free lunch is Over”,
,O00, [ O
Intel CPU Trends A by Herb Sutter, 2005
(sout"ces: Intel, Wikipedia, K. Olukotun) »
100,000
Multi-core CPUs, GPGPUs, SMP, AMP
o Cloud computing and high parallelism
are now the norm from desktop, to server,
500 to embedded and mobile computing.
' There is NO escape!
100
We can’t scale-up, so we
10
must scale-out
1 @ Transistors (000) =5 == nOt easy
4R @ Clock Speed (MHz)
Y .‘.. APower (W)
2 i .Pmlc'“r & graph lifted from

http:/ / www.gotw.ca/ publications/ concurrency-ddj.htm
1970 1975 1980 1985 1990 1995 2000 2005 2010
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So what 1s the enemy of high concurrency?
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So what 1s the enemy of high concurrency?

State !

Functional programming languages such as LISP present functions which are
pure computations that never keep state.

Functions in this case are side-effect free, they take values and return values
and every function is itself a value.

Monday, 20 June 2011



Spot another pattern?

Pragmaticomm

Web,
Facebook,
Twitter,
Google,
mobiles,
cloud
computing,
NoSQL,
Graph DBs,
MapReduce,
Hadoop,
Mahoot,
R,
Flickr,
YouTube,
etc.
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Google,
mobiles,
cloud
computing,
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Graph DBs,
MapReduce,
Hadoop,
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YouTube,
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» Big Data
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Spot another pattern?

Web,
Facebook,
Twitter,
Google,
mobiles,
cloud
computing,
NoSQL,
Graph DBs,
MapReduce,
Hadoop,
Mahoot,
R,
Flickr,
Youtube,
ete.

So big that many times it is not easy
or possible to fit them into RAM in
order to do the required processing !!

» Big Data

Hence many times we opt to
distribute data for parallel processing.
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So what’s coming?

* OOP helps us battle complexity and build large systems

* FP helps us battle parallelism and to process “big data”

Smalltalk’s and LISP’s children combined
are excellent candidates for dealing with the
future (as well as for being the basis for DSLs).
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Multi-paradigm programming of course

For a moment it looked like disciplines represented by Smalltalk and LISP
were going to be united on top the ideas of the JVM and .NET/DLR.

Unfortunately at the moment politics again seem to be destroying this...

This is why I am happy that projects like MacRuby, MagLev and Rubinius
exist!

http:/ /www.macruby.org/ uses the LLVM infrastructure for JIT compilation and AOT compilation, no GIL, multithreaded GC
http:/ /ruby.gemstone.com/ is based on a highly optimised and proven Smalltalk VM

http:/ /rubini.us/ is following the Smalltalk VM philosophy of building the Ruby VM in Ruby taht allows many optimisations

and of course I'm really happy that Ruby 1.9.x
YARYV and JRuby keep us going every day :-)
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Wouldn’t it be nice

+ To use one (Ruby) bytecode to execute Ruby, Clojure, JavaScript etc
natively on the same VM side-by-side?

+ To have an agreed spec for this bytecode so that we could have many
compatible implementations?

+ To have these VMs handle concurrency efficiently?

+ To not have to wait more and hope for JSR-292 and pray that politics won't
derail JVMs?

- Have a Smalltalk-like IDE built entirely n RUby (like a Redcar ++ http:// redcareditor.com)?

+ To be able to reuse with the above all existing native libraries (C,C++ etc)?
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lo probe further

> “The Mythical Man-month™ by F.P. Brooks, 1975

* “Object-Oriented Programming: An evolutionary approach” by Brad.
J. Cox and A. J. Novobilski, 1986

» “Smalltalk-80: The interactive programming environment” by Adele
Goldberg, 1984 (The red book)

» “Smalltalk-80: The language and its implementation” by Adele
Goldberg and David Robson, 1983 (The blue book)

» “Smalltalk-80: Bits of history words of advise” by Glenn Krasner,
1983 (The green book)

*» “Common LISP: The Language” by Guy L. Steele jr, 1984
> “Crossing the Chasm” by Geoffrey Moore, 1991/1999
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Thank you :-)

www.pagonis.org / Publications
www.pragmaticomm.com

twitter.com /JohnPagonis
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