
20/06/11

Copyright 2011, Pragmaticomm Limited, www.pragmaticomm.com

Dr John Pagonis, Pragmaticomm Limited
Athens Ruby Meetup #6, CoLab Athens, 20 June 2011

The Zen has happened before

Ruby is the proof that Smalltalk was right and
why we'll use them with LISP's bastard children

Monday, 20 June 2011

Why am I doing this?

Because if we don’t study the past we will screw up the future!

Because if we learn from the past we will invent the future faster!

Because there is a lot of snake oil out there as well as good ideas
that we have forgotten or never knew about!

...and because I’m into software archaeology :-)

Monday, 20 June 2011

Before we start... a word from the wise

A reminder from Fred. P. Brooks’ ‘’ No Silver Bullet - essence and accidents of
software engineering’’,1986

There is NO silver
bullet!

Monday, 20 June 2011

Language disclaimer...

• I am NOT any programming language bigot, expert or evangelist.

• I am a (legacy) C++ programmer (actually Symbian OS C++) that turned to Ruby.

• I enjoy using C++ for getting to the metal.

• I’ve taught ‘C’ to students and professionals because it is so basic (and blunt:-) and thus
helps explain how things work.

• I am also very interested in Virtual Machines, Operating systems internals, languages and
runtimes in general

• even in the new ISO C++0x spec sometimes :-P

Monday, 20 June 2011

My experience with Ruby

• I was introduced to Ruby during a Python seminar at ACCU 2006 !!

• First got involved in ‘skunkworks’ while at Symbian circa 2007

• Ported in 2007/2008 with Pragmaticomm the Ruby 1.9.0.0 VM and Ruby
1.9.1p1 VM and some extensions (about 120 KLOC) to Symbian OS v9.1 (for Nokia’s
Symbian Research dept.) --R.I.P

• I’ve used Ruby for mobile programming, text filtering, classification,
recommender systems, genetic algorithm and web app work (but not
Rails:-).

...so I’m no expert, ok!

Monday, 20 June 2011

The diamond shape of computer architecture

I am intrigued by a 2004 F.P.
Brooks speech where he
discussed how computer
architecture since the 30s
has followed a diamond

shape in terms of the ideas
explored and finally

established in the
marketplace

30s

mainframes

minis

micros, PCs

?
2004, he correctly

predicted GPGPUs

http://pages.cs.wisc.edu/~arch/www/brooks.html

rtsp://vstream.acm.org/FredBrooks/FredBrooks768k/
FredBrooksFull768K.mp4

Divergence of ideas

Convergence of ideas

exploration of ideas

what comes next....

check out mins 13:00 -17:00

Monday, 20 June 2011

The diamond shape of computer architecture

30s

mainframes

minis

micros, PCs

cloud computing
perhaps? :-)

2004, he correctly
predicted GPGPUs

Divergence of ideas

Convergence of ideas

exploration of ideas

“mainframes + terminals”

“cloud computing + mobile terminals
, browser based clients”

VLSI, SoI, SoC,
better tooling, packaging

economies of scale, etc

Monday, 20 June 2011

So what about programming?

The striking similarity between the past and the
future of computer architecture makes you think...

Monday, 20 June 2011

So what about programming?

...are we going back to equivalents of punch-cards
and programming for batch processing?!!! ; o)

The striking similarity between the past and the
future of computer architecture makes you think...

Monday, 20 June 2011

Relax!

Actually many programming languages were
designed with humans in mind.

But machines were not ready, so we had to revert
to programming that was machine efficient

rather than programmer efficient.

Monday, 20 June 2011

Programmer
efficiency

Program efficiency

frameworks, tooling

VMs, JITC, HW acceleration ,etc

Holy Grail territory
Silver Bullet

trade-off line

Consider this map

Application specific

Monday, 20 June 2011

A brief timeline of (some) programming languages

Information Processing
Language I/II 1954- 1958
Fortran 1954- 1956
ALGOL 1958
COBOL 1959
LISP 1956-1959
Simula 1962-1967
BASIC 1964
BCPL 1967
Logo 1968
‘B’ 1969
Pascal 1970
Smalltalk 1972 - 1980
SQL 1972
Prolog 1972
‘C’ 1972
Modula 1975
CwC, C++ 1980 -1983
Object Pascal 1986

Objective-C 1986
Self 1986 - 1995, 2006
Perl 1987
Erlang 1987 - 1993
Haskell 1990
Python 1989 - 1991
AppleScript 1989 - 1993
StrongTalk 1993 - 1996
Visual Basic 1991
Java 1995
Ruby 1995
PHP 1995
LiveScript 1995
‘D’ 1999
Scala 2002-2006
Clojure 2007
Groovy 2007
Go 2009
CoffeeScript 2009

Monday, 20 June 2011

A brief timeline of (some) programming languages

Information Processing
Language I/II 1954- 1958
Fortran 1954- 1956
ALGOL 1958
COBOL 1959
LISP 1956-1959
Simula 1962-1967
BASIC 1964
BCPL 1967
Logo 1968
‘B’ 1969
Pascal 1970
Smalltalk 1972 - 1980
SQL 1972
Prolog 1972
‘C’ 1972
Modula 1975
CwC, C++ 1980 -1983
Object Pascal 1986

Objective-C 1986
Self 1986 - 1995, 2006
Perl 1987
Erlang 1987 - 1993
Haskell 1990
Python 1989-1991
AppleScript 1989 - 1993
StrongTalk 1993 - 1996
Visual Basic 1991
Java 1995
Ruby 1995
PHP 1995
LiveScript 1995
‘D’ 1999
Scala 2002-2006
Clojure 2007
Groovy 2007
Go 2009
CoffeeScript 2009

Monday, 20 June 2011

A brief timeline of (some) programming languages

Information Processing
Language I/II 1954- 1958
Fortran 1954- 1956
ALGOL 1958
COBOL 1959
LISP 1956-1959
Simula 1962-1967
BASIC 1964
BCPL 1967
Logo 1968
‘B’ 1969
Pascal 1970
Smalltalk 1972 - 1980
SQL 1972
Prolog 1972
‘C’ 1972
Modula 1975
CwC, C++ 1980 -1983
Object Pascal 1986

Objective-C 1986
Self 1986 - 1995, 2006
Perl 1987
Erlang 1987 - 1993
Haskell 1990
Python 1989 - 1991
AppleScript 1989 - 1993
StrongTalk 1993 - 1996
Visual Basic 1991
Java 1995
Ruby 1995
PHP 1995
LiveScript 1995
‘D’ 1999
Scala 2002-2006
Clojure 2007
Groovy 2007
Go 2009
CoffeeScript 2009

Monday, 20 June 2011

Spot a pattern?

Information Processing
Language I/II 1954- 1958
Fortran 1954- 1956
ALGOL 1958
COBOL 1959
LISP 1956-1959
Simula 1962-1967
BASIC 1964
BCPL 1967
Logo 1968
‘B’ 1969
Pascal 1970
Smalltalk 1972 - 1980
SQL 1972
Prolog 1972
‘C’ 1972
Modula 1975
CwC, C++ 1980 -1983
Object Pascal 1986

Objective-C 1986
Self 1986 - 1995, 2006
Perl 1987
Erlang 1987 - 1993
Haskell 1990
Python 1989 - 1991
AppleScript 1989 - 1993
StrongTalk 1993 - 1996
Visual Basic 1991
Java 1995
Ruby 1995
PHP 1995
LiveScript 1995
‘D’ 1999
Scala 2002-2006
Clojure 2007
Groovy 2007
Go 2009
CoffeeScript 2009

Monday, 20 June 2011

Spot a pattern? (let me help you:-)

Information Processing
Language 1954- 1958
Fortran 1954- 1956
ALGOL 1958
COBOL 1959
LISP 1956-1959
Simula 1962-1967
BASIC 1964
BCPL 1967
Logo 1968
‘B’ 1969
Pascal 1970
Smalltalk 1972 - 1980
SQL 1972
Prolog 1972
‘C’ 1972
Modula 1975
CwC, C++ 1980 -1983
Object Pascal 1986

Objective-C 1986
Self 1986 - 1995, 2006
Perl 1987
Erlang 1987 - 1993
Haskell 1990
Python 1989 - 1991
AppleScript 1989 - 1993
StrongTalk 1993 - 1996
Visual Basic 1991
Java 1995
Ruby 1995
PHP 1995
LiveScript 1995
‘D’ 1999
Scala 2002-2006
Clojure 2007
Groovy 2007
Go 2009
CoffeeScript 2009

?
So are we going
back to the ideas
of LISP and
Smalltalk?!

We will never ever get rid of
Fortan and C of course :-)

You can also observe this on O’Reilly’s
‘History of Programming Languages’ Map

http://oreilly.com/news/graphics/
prog_lang_poster.pdf

Monday, 20 June 2011

Smalltalk and Ruby (some characteristics)

• Object oriented (all the way)
• Dynamically typed
• Strongly typed
• Interpreted and/or executed in VM
• Garbage collected
• Reflective
• Extensible
• Cross-platform
• Smalltalk is typically written in itself
• Has only 5 reserved keywords
• No control constructs
• Keyword syntax
• Code blocks are objects
• Makes extensive use of REPL
• Makes use of a persistent image
• Very advanced VMs

Ruby is a genuine object-oriented language
The result of every expression is an object
Objects are garbage collected
Like with Smalltalk and Objective-C, objects
respond to messages
Such messages contain a method’s name
together with the parameters that the method
may need
Ruby is a single inheritance language
Classes can include the functionality of any
number of ‘mixins’
Ruby is a dynamic (late-binding) language
There is access control in Ruby
You can use curly braces {} if you want to :-)
(because it is important:-)
Ruby syntax is easy, pleasant and familiar to
most

Smalltalk Ruby

I am not an expert but they look like they have too many things in common

Monday, 20 June 2011

Smalltalk IDE

In Smalltalk, the language and the IDE are

traditionally coupled so that the IDE itself

can be manipulated in Smalltalk by every

programmer while working on a project.

In Smalltalk, typically the state of the

running program and the IDE are saved

(and executed) as one image file (of

bytecode, source, docs and metadata).

Monday, 20 June 2011

Smalltalk environments - don’t you want some for Ruby?

Cincom VisualWorks
Squeak

Monday, 20 June 2011

Software is all about people and economics

Programmer
efficiency

Program efficiency

frameworks,

VMs, JITC, HW

Holy Grail
territory

trade-off line

Application specific

Economics have changed
• Programmer time is more expensive
• CPU time is cheaper
• More functionality yields higher
system complexity that leads to more
entropy which leads to higher cost
•Shorter time to market is vital

Programmers have changed
• Programmers care less
• They have more things to do and
info to assimilate

More than ever before, it is that the fewer the people, the better the quality of the
code and cheaper the cost of the product. So they need to be hyper productive.
One way to achieve this, is with better suited programming languages.

Monday, 20 June 2011

Machine vs Programmer efficiency (both needed)

Traditionally program
efficient languages have
adopted static binding and
the edit-compile-link-
execute cycle into
programer lives. They
execute as native
instructions on a CPU.

Programmer efficient
(general purpose)
languages have usually
opted for late binding and
read-evaluate-print-loop
interactivity which
Smalltalk took to the
extreme. They execute
under an interpreter or
virtual machine which
typically slows them down.

Program efficiency Programmer efficiency

... of course Fortran is a different story :o)

Monday, 20 June 2011

Evolution

As computer hardware evolved and improved
so have Virtual Machines since the 50s

Monday, 20 June 2011

Evolution

As computer hardware evolved and improved
so have Virtual Machines since the 50s

There has been a lot of top notch work to improve
and optimise VMs, due to LISP, Smalltalk and Self

Monday, 20 June 2011

Evolution

As computer hardware evolved and improved
so have Virtual Machines since the 50s

There has been a lot of top notch work to improve
and optimise VMs, due to LISP, Smalltalk and Self

A great amount of VM state of the art has ended up
in Smalltalk and especially Java VMs these days

Monday, 20 June 2011

Evolution

As computer hardware evolved and improved
so have Virtual Machines since the 50s

There has been a lot of top notch work to improve
and optimise VMs, due to LISP, Smalltalk and Self

A great amount of VM state of the art has ended up
in Smalltalk and especially Java VMs these days

So is it that to invent the future for Ruby we need
 to look back into the success and failure of the

Smalltalk family?

Monday, 20 June 2011

Then why do we use Ruby ?

Smalltalk which is still alive and kicking in
various advanced, enterprise, embedded and
mission critical systems, could be characterised
as “disruptive technology” that didn’t “cross the
chasm”. This was partly due to politics, business
decisions and the available technology at the
time of its introduction.

With Ruby we’ve been luckier because we
avoided the politics and both technology and
people were ready for its acceptance.

Ironically, Java is one of the reasons why
the best Smalltalk implementations and
research from IBM, OTI and Sun were
(mostly) abandoned to later fuel JVMs !!!

Monday, 20 June 2011

Spot another pattern?

Information Processing
Language I/II 1954- 1958
Fortran 1954- 1956
ALGOL 1958
COBOL 1959
LISP 1956-1959
Simula 1962-1967
BASIC 1964
BCPL 1967
Logo 1968
‘B’ 1969
Pascal 1970
Smalltalk 1972 - 1980
SQL 1972
Prolog 1972
‘C’ 1972
Modula 1975
CwC, C++ 1980 -1983
Object Pascal 1986

Objective-C 1986
Self 1986 - 1995, 2006
Perl 1987
Erlang 1987 - 1993
Haskell 1990
Python 1989 - 1991
AppleScript 1989 - 1993
StrongTalk 1993 - 1996
Visual Basic 1991
Java 1995
Ruby 1995
PHP 1995
LiveScript 1995
‘D’ 1999
Scala 2002-2006
Clojure 2007
Groovy 2007
Go 2009
CoffeeScript 2009

Monday, 20 June 2011

Spot another pattern?

Information Processing
Language I/II 1954- 1958
Fortran 1954- 1956
ALGOL 1958
COBOL 1959
LISP 1956-1959
Simula 1962-1967
BASIC 1964
BCPL 1967
Logo 1968
‘B’ 1969
Pascal 1970
Smalltalk 1972 - 1980
SQL 1972
Prolog 1972
‘C’ 1972
Modula 1975
CwC, C++ 1980 -1983
Object Pascal 1986

Objective-C 1986
Self 1986 - 1995, 2006
Perl 1987
Erlang 1987 - 1993
Haskell 1990
Python 1989 - 1991
AppleScript 1989 - 1993
StrongTalk 1993 - 1996
Visual Basic 1991
Java 1995
Ruby 1995
PHP 1995
LiveScript 1995
‘D’ 1999
Scala 2002-2006
Clojure 2007
Groovy 2007
Go 2009
CoffeeScript 2009

Support for high
Concurrency

Monday, 20 June 2011

Of Moore’s law and GHz speeds

“The Free lunch is Over” ,
 by Herb Sutter, 2005

graph lifted from
http://www.gotw.ca/publications/concurrency-ddj.htm

Multi-core CPUs, GPGPUs, SMP, AMP
Cloud computing and high parallelism
are now the norm from desktop, to server,
to embedded and mobile computing.
There is NO escape!

We can’t scale-up, so we
must scale-out

=> not easy

Monday, 20 June 2011

So what is the enemy of high concurrency?

Monday, 20 June 2011

So what is the enemy of high concurrency?

State !

Functional programming languages such as LISP present functions which are
pure computations that never keep state.

Functions in this case are side-effect free, they take values and return values
and every function is itself a value.

Monday, 20 June 2011

Spot another pattern?

Web,
Facebook,

Twitter,
Google,
mobiles,

cloud
computing,

NoSQL,
Graph DBs,
MapReduce,

Hadoop,
Mahoot,

R,
Flickr,

YouTube,
etc.

Monday, 20 June 2011

Spot another pattern?

Web,
Facebook,

Twitter,
Google,
mobiles,

cloud
computing,

NoSQL,
Graph DBs,
MapReduce,

Hadoop,
Mahoot,

R,
Flickr,

YouTube,
etc.

Big Data

Monday, 20 June 2011

Spot another pattern?

Web,
Facebook,

Twitter,
Google,
mobiles,

cloud
computing,

NoSQL,
Graph DBs,
MapReduce,

Hadoop,
Mahoot,

R,
Flickr,

Youtube,
etc.

Big Data

So big that many times it is not easy
or possible to fit them into RAM in
order to do the required processing !!

Hence many times we opt to
distribute data for parallel processing.

Monday, 20 June 2011

So what’s coming?

• OOP helps us battle complexity and build large systems

• FP helps us battle parallelism and to process “big data”

Smalltalk’s and LISP’s children combined
are excellent candidates for dealing with the
future (as well as for being the basis for DSLs).

Monday, 20 June 2011

Multi-paradigm programming of course

For a moment it looked like disciplines represented by Smalltalk and LISP
were going to be united on top the ideas of the JVM and .NET/DLR.

Unfortunately at the moment politics again seem to be destroying this...

This is why I am happy that projects like MacRuby, MagLev and Rubinius
exist!
http://www.macruby.org/ uses the LLVM infrastructure for JIT compilation and AOT compilation, no GIL, multithreaded GC

http://rubini.us/ is following the Smalltalk VM philosophy of building the Ruby VM in Ruby taht allows many optimisations

http://ruby.gemstone.com/ is based on a highly optimised and proven Smalltalk VM

and of course I’m really happy that Ruby 1.9.x
YARV and JRuby keep us going every day :-)

Monday, 20 June 2011

Wouldn’t it be nice

• To use one (Ruby) bytecode to execute Ruby, Clojure, JavaScript etc
natively on the same VM side-by-side?

• To have an agreed spec for this bytecode so that we could have many
compatible implementations?

• To have these VMs handle concurrency efficiently?

• To not have to wait more and hope for JSR-292 and pray that politics won’t
derail JVMs?

• Have a Smalltalk-like IDE built entirely in Ruby (like a Redcar ++ http://redcareditor.com)?

• To be able to reuse with the above all existing native libraries (C,C++ etc)?

Monday, 20 June 2011

To probe further

“The Mythical Man-month” by F.P. Brooks, 1975
“Object-Oriented Programming: An evolutionary approach” by Brad.
J. Cox and A. J. Novobilski, 1986
“Smalltalk-80: The interactive programming environment” by Adele
Goldberg, 1984 (The red book)
“Smalltalk-80: The language and its implementation” by Adele
Goldberg and David Robson, 1983 (The blue book)
“Smalltalk-80: Bits of history words of advise” by Glenn Krasner,
1983 (The green book)
“Common LISP: The Language” by Guy L. Steele jr, 1984
“Crossing the Chasm” by Geoffrey Moore, 1991/1999

Monday, 20 June 2011

Thank you :-)

www.pagonis.org/Publications

www.pragmaticomm.com

twitter.com/JohnPagonis

Monday, 20 June 2011

