
Patterns of Productive Software Organisations

John Pagonis

17 April 2004, Oslo

0-0

1

Patterns of Productive Software
Organisations

• Intro

• What are patterns and pattern languages

• Patterns of Productive Software Organisations

• Discussion

2

Intro - Why I am doing this

• An excuse to introduce patterns and organisational patterns (at least to some;-)

• Because we’re young and we can learn from others – make our lives easier

• Stimulate interest in making our development organisation rather than just

accepting it; and also thinking about improvement.

• Bring to your attention potential solutions to problems that you may be

experiencing

• To point out some of the good things you have in common with productive

software organisations !!!

3

What is a pattern ? – ”a solution to a problem
in a context”

”A pattern is a piece of literature that describes a design problem and a general

solution for the problem in a particular context”. as J.O Coplien puts it.

Patterns can be thought of more like recipes, rather than plans which can be

reverse engineered; our genome is a recipe, as Ward Cunningham puts it.

Patterns capture important empirical design information, thus making up for lapses

in our memory.

Also patterns unearth and capture non immediately apparent structure (i.e

important constructs which cut across objects in a system).

4

Some clarifications on patterns

None can become a better XYZ by following a method blindly.

• Patterns represent our memory of solutions and our collective experience.

• Human communication is a great problem in software development, patterns

provide us with a common vocabulary.

• Patterns are discovered as opposed to designed !

• Patterns are GENERAL solutions, they do NOT solve any problem by

themselves. As in any solution there are trade-offs to consider.

An architect, still, has to manipulate constraints and affordances, navigate through

forces and identify the context for which to use different patterns and their

consequences; in order to come to a satisfactory outcome.

5

Pattern Form(s)

Patterns are a literary form and there is a large variety of pattern forms; like the

Alexandrian, GoF, Coplien and Portland forms.

e.g Coplien form;

The pattern name

The problem

The context

The forces

The solution

A rationale

Resulting context

6

What is a pattern language ?

A pattern language is a collection of patterns that build on each other to generate

a system. –Coplien

Pattern languages place individual patterns in context (in a domain) where they are

distinguished from their variability.

Patterns in a language form a network , where their links are as important as

them and whose distinct number of paths through the language is (usually) very

large.

When one follows a path through the language, then he/she can have a complete

system build using that language.

....enough

7

Patterns of Productive Software
Organisations

The plethora of these patterns are taken from studies conducted from Lucent Bell

Labs over a period of 3 years on 40 highly productive software organisations.

By organisation I mean a software development organisation.

8

Common Characteristics

Keep Organisation Simple: Fewer roles in the organisation, usually around 16 vs

21 others had

Work flows Inward: The role of the developer is in the centre where information

flows from producers of information to consumers of information (developers).

The role of the developer is thus supported by the other roles.

Distribute Work Evenly: Don’t allow the focus on any developers to become

extreme, hence distribute communication around. Even the most central role

would not have to deal with disproportionate amounts of communication/work.

Iterate, Iterate! : For these organisations, the traditional waterfall model of software

development exists only on paper. Also design and coding were inseparably

inter-wined.

Compensate success: With celebrations and other reward structures ;-)

9

Some of these patterns ...

1. Conway’s Law (organisation follows the architecture)

2. Organisation Follows Location

3. Size the Organisation (e.g 10 people ==60KSLOC in 8 months or 200KSLOC in

15)

4. Few Roles (e.g less than 16 – reduces communication overhead)

5. Patron

6. Engage Customers

7. Self Selecting Team

8. Developers Control Process

9. Lock’em Up Together

10

10. Upside Down Matrix Management

11. Face to Face Before Working Remotely (i.e PAN split between Cam/London)

12. Architect Also Implements

13. Review the Architecture

14. Group Validation (e.g CRC sessions, team debugging, team review etc)

15. Stand-up Meetings (e.g stand-up room, SCRUM meetings)

16. Engage QA

17. Scenarios Define Problem (e.g XP stories, not design documents ;-)

18. Work Queue (e.g SCRUM backlog, prioritise, planning output is smaller than

input)

19. Mercenary Analyst (Documentation is a distraction, and someone is hired to

take care of it)

11

20. Named Stable Bases (a.k.a release and mainline builds)

21. Incremental Integration

22. Early and Regular Delivery (a.k.a release early and release often !)

23. Programming Episodes (e.g XP weekly iterations)

24. Private World (independent team development – i.e dev-branch)

25. Prototype

26. Skunk Works

27. Solo Virtuoso

28. Fire-Walls

29. Gate Keeper

30. Apprentice

31. Day Care (e.g training Boot Camp)

12

32. Developing in Pairs !!!

33. Sacrifice One Person (to sort out many small distractions)

34. Interrupts Unjam Blocking

35. Don’t Interrupt an Interrupt

13

Bibliography and References

• A Generative Development Process Pattern Language, J. O. Coplien, in Pattern

Languages of Program Design, Addison Wesley 1995

• Patterns of Productive Software Organizations,

http://www.lucent.com/minds/techjournal/

summer 96/paper11/index.html

• Software Patterns, J. O Coplien, SIGS 1996 (out of print)

http://www1.bell-labs.com/user/cope/Patterns/

WhitePaper/SoftwarePatterns.pdf

• Perfecting Patterns, A. O Callaghan, Application Development Advisor, vol 5,

no.4, May 2001

• Organization Book

http://www.bell-labs.com/cgi-user/OrgPatterns/

14

OrgPatterns?OrganizationBook

• Organizational Patterns of Agile Software Development - draft

http://www.easycomp.org/cgi-bin/OrgPatterns?BookOutline

• Organizational Patterns of Agile Software Development, Coplien & Harrison,

Prentice-Hall, July 2004

• Managing the Flow of Technology,Allen, Thomas. The MIT Press,

Massachusetts, 1977.

• SCRUM: An extension pattern language for hyperproductive software

development, M. Beedle et al.

http://www.controlchaos.com/scrum.pdf

• Process Patterns Home Page

http://www.ambysoft.com/processPatternsPage.html

