
1

Dr. John Pagonis
Pragmaticomm Limited,

Athens Ruby Meetup #9, March 31st 2012

The Ruby Programming Language...
it's really fun and it feels good!

twitter: @greekrubymeetup @johnpagonis

1

2

Menu

Why I got into Ruby?
In search of a better way to code
Ruby in twenty minutes (or thereabouts:-)

Why we should all have a look at it?

2

3

Before we start… a word

! A reminder from Fred. P. Brooks ‘’ No Silver Bullet - essence and
accidents of software engineering’’,1986

! ! There is NO silver bullet!

3

4

My experience with Ruby (mostly

First got involved in 'Skunkworks' while at Symbian :-)
Ported with Pragmaticomm the Ruby 1.9.0.0 and Ruby 1.9.1p1
VM and some extensions to Symbian OS v9.1 (for Nokia's Symbian
Research dept.)

I've used it for mobile programming, text filtering,
classification, Web apps, machine learning, database access
and Genetic Algorithm related work

4

5

Lately in my life (does it look familiar to you?)

There is a a lot of stuff I need to automate
There are a lot of stuff I want to develop
There are a lot of platforms I need to be using
I need to be more efficient when coding.
I have realised that my time and memory is MUCH more
expensive than my CPUs’ time and RAM.
I haven’t been getting any younger
I haven’t been getting much smarter :-)
I think faster than I code!
I am running out of time….

5

6

Consequently

Life is too short, to not have fun…

! ! ! I have to cheat!

! There must be a better way to program… there must be!!

6

7

There must be a better way to program… there must be!!

..to clarify that
! There must be a much better way than C,C++ (and maybe

Objective-C) to code software that
… doesn’t need to talk to the metal directly
… doesn’t need to be as efficient at runtime
… allows me to solve problems fast
… lets me change my mind and accommodate change
… is fun and feels good
… is not ugly and doesn’t get in the way
… has a lot of frameworks to get the job done
… I can use in many domains and on many platforms
… supports open-world system reuse

7

8

I felt so weak

So I went out to find a silver bullet!!!

! Then I remembered that there isn’t one and that F.P.
Brooks said in 1975...

 !…that compilers are three times as hard to write as
application programs and systems programs are three
times as hard to write as compilers (may not be true for C++:-)

! … that the use of a suitable high-level language may
dramatically improve programmer productivity

! So lets keep C++ for operating systems coding..

8

9

So what I need is:

! A fun language for non system level stuff which is mainly
programmer efficient as opposed to program efficient and which is
also general purpose (that excludes Fortran I guess:-).

Programmer
efficiency

Program efficiency

frameworks, tooling

VMs,JITC, HW accel,etc

Holy Grail territory
Silver Bullet

trade-off line

9

10

Software is all about people

The economics have changed
 Now it pays even more to have programmer efficiency
 More functionality yields higher system complexity that

leads to more entropy which leads to higher cost (because you
need more energy:-)

 Shorter time from idea to production is vital in order to
compete

People have changed
 People care less about how things work (hence know less)
 People have more things to do and much more

information to assimilate and keep in their heads
The fewer people you have, the better is the quality of the code
but to be on-time they need to be very productive!

10

11

What if there was a silver bullet?

How much more money/time would I save if I
could develop things N times faster?
How much more competitive would my
organisation be if they could deliver N times
faster?
What if the claims which Smalltalk makes that
you get 10 times the programmer efficiency was
true?
What if there is something out there today that
could give me some of that N for the problems
that I want to solve?

11

12

Of course the answer is

multi-language and multi-paradigm programming....
 (but this is another topic for another presentation :-)

12

13

Then I came across Ruby

Actually it was at a Python seminar at ACCU 2006 !!!
Ruby was first released to the public in 1995 by Matz (Yukihiro
Matsumoto)
Ruby is a play on the word Perl :-)
Ruby was designed to be beautiful, fun and ‘’stay out of the
way’’
It comes with a standard documentation system ‘RDoc’, a
standard packaging system ‘RubyGems’, an interactive shell
‘irb’, the Ruby VM, a hell of a lot of frameworks and a very
useful standard library.
It also has an efficient official VM these days (in Ruby 1.9.x)!

13

14

Ruby in 20 minutes (mostly ripped of the Ruby website)

Ruby is a genuine object-oriented language
The result of every expression is an object
Objects are garbage collected
Like with Smalltalk and Objective-C, objects respond to
messages
Such messages contain a method’s name together with the
parameters that the method may need
Ruby is a single inheritance language
Classes can include the functionality of any number of ‘mixins’
Ruby is a dynamic (late-binding) language
There is access control in Ruby
You can use curly braces {} if you want to :-) (because it is important:-)

14

15

Ruby execution

Ruby executes usually under the support of a 'runtime' which is usually a
bytecode Virtual Machine or interpreter.
Ruby runtimes can be as diverse as JavaScript interpreters to compilers that
output ARM binary code.
Ruby can be embedded inside another application (such as MacRuby Mac
OS X apps and even Symbian OS C++ apps).
The official Ruby 1.9.0 VM written by Koichi Sasada is 330KLOC written in
K&R style 'C' and can easily be extended by native extensions. It assumes
Posix APIs and applies native multithreading. It is also a parser and a
bytecode compiler (but there is no JIT compilation yet).

In-fact the core VM plus the OpenSSL and TCP/IP extension is only
140KLOC
Compared to the 1.8 (MRI) interpreter the Ruby 1.9 VM executes up to 20
times faster in some cases! Now Ruby 1.9.3 has much better memory
management as well.

15

16

The Ruby world

VMs: JRuby JVM, .NET (DLR), MacRuby, Smalltalk MagLev,
SmallRuby, CRuby, MRI, Rubinius, BlueRuby, XRuby
IRB, Pry you can try your idea on the command line
Web frameworks and containers: Rack, Rails, Ramaze, Sinatra,
Padrino, Webrick, Rack, Rango...
GUIs: Shoes, FXRuby, QT/Ruby, MonkeyBars
Compilers: RubyScript2Exe, Ocelot, Atomic-Ruby
Packaging: Ruby Gems, Gem Bundler
IDEs: FreeRIDE, Aptana, Netbeans, RadRails, RubyMine, Eclipse,
Ruby In Steel (VS), Redcar, XCode...
Application frameworks:

16

17

Reuse (a.k.a better economics)

 With Ruby and the plethora of VMs you can reuse your
existing components
Reuse of Java components (GUIs as well) through JRuby
Reuse of Smalltalk components through MagLev and SmallRuby
Reuse of .NET components with IronRuby and Ruby.NET
Reuse of Objective-C components and Mac OS X GUI through
MacRuby
Reuse of 'C' components and native OS APIs through CRuby
extensions
You can also reuse Ruby code from C/C++/Objective-C

17

18

Hello Ruby (the 2nd most important slide)

irb(main):001:0> puts ‘Hello Ruby world’

Hello Ruby world

=>nil

This is more interesting though:

! 10.times {p “better”}

 The message ‘times’ is sent to the object ’10’, with the code ‘p
“better”’ as payload, packaged in a block denoted by ‘{}’

and this
! “Hello Ruby world”.length - 16 !

18

19

Duck typing

! If it walks like a duck, talks like a duck and looks like a
duck…well it must be a duck

 ...basically it is about late-binding, where the
implementation of a request is determined at run time
dynamically according to the message and receiver
involved

 ...so if an object responds to some message protocol we
don't care what its type really is, only that it adheres to it

19

20

Defining a method

def say_hi

 puts “hi”

end

Is called by:
 say_hi Or !say_hi()
...

def say_hi(name)

 puts “hi #{name}”

end

...

def say_hi(name = “there”)

 puts “hi #{name}”

end

20

21

Defining a class

 class Greeter

 def initialize(name = “world”)

 @name = name

 end

 def say_hi

 puts “Hi #{name.capitalize}”

 end

 end

 g = Greeter.new(“john”)

Note the coding naming convention here!

21

22

Under the object’s skin

irb(main):010:0> g.@name
SyntaxError: compile error
(irb):52: syntax error
 from (irb):52

Let’s see what is inside the object:

irb(main):039:0> Greeter.instance_methods
=> ["method", "send", "object_id", "singleton_methods",
 "__send__", "equal?", "taint", "frozen?",
 "instance_variable_get", "kind_of?", "to_a",
 "instance_eval", "type", "protected_methods", "extend",
 "eql?", "display", "instance_variable_set", "hash",
 "is_a?", "to_s", "class", "tainted?", "private_methods",
 "untaint", "say_hi", "id", "inspect", "==", "===",
 "clone", "public_methods", "respond_to?", "freeze",
 "__id__", "=~", "methods", "nil?", "dup",
 "instance_variables", "instance_of?"]

22

23

That was… a lot of

Greeter’s ancestor is Object (BasicObject), where
it got all those methods

So let’s get only the ones we defined then:
irb(main):040:0> Greeter.instance_methods(false)
=>["say_hi"]

And even check them out
irb(main):041:0> g.respond_to?("name")
=> false
irb(main):042:0> g.respond_to?("say_hi")
=> true
irb(main):043:0> g.respond_to?("to_s")
=> true

23

24

Altering Classes—It’s Never Too Late

In Ruby, you can open a class up again and modify it.
The changes will be present in any new objects that you
create and even in existing objects of that class.

!
! Now consider how powerful this is in the context of C++ binary

compatibility and over the air upgrades or of a 24/7 system that you
can debug and alter when it is live !!

 You can even override methods implemented natively (in 'C') inside the
VM!

24

25

Opening up a class and adding an accessor

class Greeter

 attr_accessor :name

End

irb(main):048:0> g.respond_to?("name")

=> true

irb(main):049:0> g.respond_to?("name=")

=> true

! Using the attr_accessor defined two new methods (as opposed to doing it
manually) for the existing Greeter class which became available to the
instantiated g object! The new methods know how to deal with the instance
@name variable.

 You cannot access @name directly from neither the same 'package' a la Java nor
from another object instance of the same class a la C++!

25

26

Let us see some more

..doing more
def say_hi
 if @names.nil?
 puts "..."
 elsif @names.respond_to?("each")
 # @names is a list of some kind, iterate!
 @names.each do |name|
 puts "Hello #{name}!"
 end
 else
 puts "Hello #{@names}!"
 end
end

26

27

Iteration, using ... iterators

 ...
 @names.each do |name|
 puts "Hello #{name}!"
 end

! If the object pointed by @names responds to the message ‘each’ then
you can iterate over its elements… it must be some kind of list!

! ‘each’ is a message that carries a block of code, it then
executes that block of code for every element in a list. The
bit between ‘do’ and ‘end’ is just such a block. A block is
like an anonymous function or ‘lambda’ (for Lispians).
The variable between the pipe characters is the parameter
for this block

27

28

More iteration

for i in 1..100
 print “Now at #{i}. Restart? “
 retry if gets =~ /^y/i
end

Now at 1. Restart? n
Now at 2. Restart? y
Now at 1. Restart? n
...
0.upto(10) do |x|
 print x, “ “ # print from 0 to 10 inclusive
end
0.step(10,2) {|x| print x, “ ”} # 0,2,4,6,8,10

…and there is much more

28

29

Blocks

Blocks are chunks of code (whoa that’s new …not)

Blocks play well with iterators
Iterators are methods that invoke a block of code
repeatedly (usually for each element of a collection)
A block may appear only in the source adjacent to a
method call
The code in the block is not executed at the time it is
encountered
Ruby remembers the context in which the block appears
and then enters the method (closure)

29

30

Blocks, where the magic

Within a method the block may be invoked using the
yield statement (Python 3000 will also have one)

Whenever a yield is executed it invokes the block

You can pass parameters to them and receive values from
them

e.g.,
def two_times

 if block_given?

 yield

 yield

 end

end

two_times {puts “Hello”}

30

31

Containers

Array
myArray = ['a','1',some_object, 3.14] #creation

myArray[3] 3.14 #indexing

myArray[2]= “c” “c” #assignment

myArray 'a','1','c',3.14

myArray[1..3] '1','c',3.14 #range

myArray.length 4

[1,2,6,4].sort.reverse 6,4,2,1

otherArray = myArray.dup #copy

Hash
h = {“key1”,1, “key2”,”value”} or h = {“key1” => 1, “key2” => “value”}

h[“key1”] 1

h.has_key?(“key1”) true

myArray =[[“john”,10],[“bill”,20]]

hashed_array = Hash[*myArray.flatten]

31

32

Conditionals

...

kind = case year

 when 1850..1889 then “Blues”

 when 1890..1909 then “Ragtime”

 when 1910..1929 then “New Orleans Jazz”

 when 1930..1939 then “Swing”

 when 1940..1950 then “Bebop”

 else “Jazz”

 end

32

33

Exceptions handling

There is an Exception class and its children
Every Exception, has a stack backtrace and a string

Exception handling is enclosed in a begin/end block
rescue tells Ruby which exceptions to handle

The ensure clause contains code that will always be
executed
There is an else clause as well

And there is a way to retry !!!

33

34

Handling exceptions

f = File.open(“thefile”)

begin

 # ... Process

rescue IOError => exc

 # ... Some handling and change of state for retry

 retry

rescue SecurityError

 # ...

else

 puts “No errors,well done!”

ensure

 f.close unless f.nil?

end

So retry takes us back at the beginning of the block!!

34

35

Raising exceptions

raise

raise “message from the deep”

raise SomeException, “Message attached”, caller

 Kernel.raise is the actual call and Kernel.caller is the
method to get the stack trace

35

36

Mixins

 can be considered as partially completed classes used to
introduce a protocol to a class

 module GoodStuff

 def goodness

 ...

 end

 end

 class MyClass < ParentClass

 include GoodStuff

 def do_good

 goodness

 end

 end

 gs = MyClass.new()

 gs.goodness

 gs.do_good

36

37

And much much more

Modules and mixins
catch and throw
Parallel assignment
Lambda
Hash tables, lists, ranges, arrays, slicing etc
C bindings
DRb
Regular expressions
Closures
More conditionals
More iteration
Message interception
Dynamic evaluation of code at runtime
Profiler
Debugger
And much more

37

38

So what we need is to move over the trade-off line

! In many cases absolute program efficiency becomes a moot point
thanks to Moore’s law, while programmer efficiency has become
an acute problem. Ruby can help today!

Programmer
efficiency

Program efficiency

frameworks, tooling

VMs,JITC, HW accel,etc

Holy Grail territory
Silver Bullet

trade-off line

38

39

What is happening out there

Currently at Ruby 1.9.3
JSR 292 support for dynamic languages (Invocedynamic) added to the
JVM and used in JRuby
JRuby is one of the fastest runtimes and one of the most popular ones
JRuby team is improving it on a daily basis
LLVM based efforts are very promising (see MacRuby)
Google's Python embrace has proven (again) that dynamic languages
are production ready, popular and powerful (it took us some 30+ years but
anyway)

You don’t need permission or voodoo to hack and extend the Ruby VM
There is a plethora of Ruby VMs and runtimes (CRuby, Rubinius,
MacRuby, MagLev, IronRuby, JRuby, etc.)
Many Rack based Web frameworks like Rails, Sinatra, Ramaze, Padrino
Ruboto on Android :-)
Powerful sys admin frameworks such as Capistrano, Puppet, Chef
Great cloud support by Heroku, EngineYard, Rackspace,
CloudFoundry and others...

39

40

Ruby projects that I want to see happening

Other languages running natively on the Ruby 1.9 VM's
bytecode and vice versa.
VM optimisations such as a JIT Compiler, pre-compilation and
independence from the GVL (Giant(global) VM Lock).

Good support for multi-core CPU/GPGPU programming
A pure Ruby GUI for desktop and small devices
A Smalltalk-like IDE and environment (but NOT like Eclipse)
Instrumentation and tool support for live and interactive on-
target development and debugging
A framework for mobile applications

40

41

To probe further

www.ruby-lang.org
www.ruby-doc.org , rdoc.info
www.rubyinside.com
“Programming Ruby 1.9” by Dave Thomas, 2009 (also online
is the 2nd ed)

“Metaprogramming Ruby” by Paolo Perrotta
“The Mythical Man-month” by F.P. Brooks, 1975
“Object-Oriented Programming: An evolutionary
approach” by Brad. J. Cox and A. J. Novobilski, 1986
“Smalltalk-80: The interactive programming
environment” by Adele Goldberg, 1984

41

http://www.ruby-doc.org/
http://www.ruby-doc.org/

Let’s hack

require ‘open-uri’

stats = Hash.new(0)

uris = [“http://www.pagonis.org”, “http://ruby-lang.org”, “http://rdoc.info”]

uris.each do |source|

 begin

 body = open(source).read

 stats[:entry_bodies] += 1

 rescue Exception => exception

 puts "Oops: Could not read the source’s webpage body"

 stats[:errors] += 1

 puts exception.inspect

 end

end

Hack and make the following code better...

IRB, Pry, RVM, Bundler (see next session) and
http://rdoc.info are your friends :-)

42

