
Copyright © 2007 Symbian Software Ltd. Page: 1

John Pagonis (a.k.a. employee 131)

Patterns of Productive Software Organisations
(a revisit of the 2001 presentation)

Copyright © 2007 Symbian Software Ltd. Page: 2

Menu
• Intro

• What are patterns and pattern languages

• Patterns of productive software organisations

• Discussion

Disclaimer: A lot of the info captured in this presentation is ‘’borrowed’’ from
works and personal communication with J. O. Coplien :-).

Copyright © 2007 Symbian Software Ltd. Page: 3

Intro
(part I)

Copyright © 2007 Symbian Software Ltd. Page: 4

Why I am doing this
• An excuse to re-introduce patterns and organisational

patterns (at least to some;-)

• Because we can learn from others in order to make
our lives easier and our customers happier.

• Stimulate interest in making our development
organisation rather than just accepting it.

• Stimulate thinking about improvement.
• Bring to your attention potential solutions for

problems that we’re experiencing

• To point out some of the good things we have in
common with productive software organisations !!!

Copyright © 2007 Symbian Software Ltd. Page: 5

Before we start… a word from the wise
A reminder from Fred. P. Brooks ‘’ No Silver Bullet - essence and accidents of software

engineering’’,1986

There is NO silver bullet!

Copyright © 2007 Symbian Software Ltd. Page: 6

The Software Engineering Book Trilogy

‘’The Psychology of Computer Programming’’, Gerald M.
Weinberg, 1971

‘’The Mythical Man-Month’’, Frederick P. Brookes Jr, 1974

‘’Organisational Patterns of Agile Software Development’’ ,
James O. Coplien, Neil B. Harrison, 2004

Copyright © 2007 Symbian Software Ltd. Page: 7

The Software Engineering Book Trilogy
‘’The Psychology of Computer Programming’’, Gerald M. Weinberg, 1971

Experiences.. about the professional programmer

‘’The Mythical Man-Month’’, Frederick P. Brookes Jr, 1974

Experiences… about the project team (more professional programmers)

‘’Organisational Patterns of Agile Software Development’’ , James O.
Coplien, Neil B. Harrison, 2004

Experiences… about the software producing organisation (of teams of programmers)

Copyright © 2007 Symbian Software Ltd. Page: 8

The Software Engineering Book Trilogy
‘’The Psychology of Computer Programming’’, Gerald M. Weinberg, 1971

Experiences.. about the professional programmer

‘’The Mythical Man-Month’’, Frederick P. Brookes Jr, 1974

Experiences… about the project team (more professional programmers)

‘’Organisational Patterns of Agile Software Development’’ , James O.
Coplien, Neil B. Harrison, 2004

Experiences… about the software producing organisation (of teams of programmers)

There is NO substitute for experience!

Copyright © 2007 Symbian Software Ltd. Page: 9

Patterns and Pattern Languages
(part II)

Copyright © 2007 Symbian Software Ltd. Page: 10

What is a pattern?

?

Copyright © 2007 Symbian Software Ltd. Page: 11

What is a pattern?

”a solution to a problem in a context”

Copyright © 2007 Symbian Software Ltd. Page: 12

What is a pattern?

”a solution to a problem in a context”

”A pattern is a piece of literature that describes a
design problem and a general solution for the
problem in a particular context”. - J.O Coplien.

Copyright © 2007 Symbian Software Ltd. Page: 13

Pattern form(s)
Patterns are a literary form and there is a large variety of pattern forms;
like the Alexandrian, GoF, Coplien and Portland forms.

e.g., Coplien form:

• The pattern name

• The problem

• The context

• The forces

• The solution

• A rationale

• Resulting context

Copyright © 2007 Symbian Software Ltd. Page: 14

Where did patterns come from?
The concept comes from buildings architecture and
in particular from an architect named Christopher
Alexander.

The idea was adopted by the software community in
the early 90s.

Copyright © 2007 Symbian Software Ltd. Page: 15

Patterns
• Patterns represent our memory of solutions and our

collective experience.

• Human communication is a big problem in software
development, patterns provide us with a common
vocabulary.

• Patterns are GENERAL solutions, they do NOT solve
any problem by themselves. As in any solution there
are trade-offs to consider

Copyright © 2007 Symbian Software Ltd. Page: 16

Patterns
Patterns can be thought of more like recipes, rather
than plans which can be reverse engineered; our
genome is a recipe, as Ward Cunningham puts it.

Patterns capture important empirical design
information, thus making up for lapses in our memory.

Patterns unearth and capture non immediately
apparent structure (i.e. important constructs which cut across
components in a system).

Copyright © 2007 Symbian Software Ltd. Page: 17

What is a pattern language ?
A pattern language is a collection of patterns that build

on each other to generate a system. – Coplien

Pattern languages place individual patterns in context (in a domain)
where they are distinguished from their variability.

Patterns in a language form a network , where their
links are as important. The distinct number of paths
through the language is (usually) very large.
When one follows a path through the language, then he/she can have a
complete system build using that language.

Copyright © 2007 Symbian Software Ltd. Page: 18

Remember: there is no silver bullet

None can become better in XYZ by following a
method blindly.

An architect, still, has to manipulate constraints and
affordances, navigate through forces and identify the
context for which to use different patterns and their
consequences; in order to come to a satisfactory
outcome.

Copyright © 2007 Symbian Software Ltd. Page: 19

Organisational Patterns
(part III)

Copyright © 2007 Symbian Software Ltd. Page: 20

Organisational improvement

To improve an organisation, you must understand it.

e.g., what is software development?

Copyright © 2007 Symbian Software Ltd. Page: 21

Organisational improvement

To improve an organisation, you must understand it.

Software development is a creative, social activity
(for those that haven’t read those three books:-)

Copyright © 2007 Symbian Software Ltd. Page: 22

Organisational improvement

Far too many improvement efforts, focus solely on
the development process.

Software development is a creative, social activity
that can’t easily be subjected to repeatable process
models.

Copyright © 2007 Symbian Software Ltd. Page: 23

Change for improvement

To improve the process or the architecture, you need to
change.

Copyright © 2007 Symbian Software Ltd. Page: 24

The chain of (organisational) change

Values

Organisational
structure

Architecture

Process
Process is a second-order effect
of the organisational structure.

Architecture is most often a
reflection of the organisational
structure (Conway’s law)

Copyright © 2007 Symbian Software Ltd. Page: 25

Change for improvement

To improve the process or the architecture, you need to
change.

To change the process or the architecture you need
to change the organisational structure first!

Copyright © 2007 Symbian Software Ltd. Page: 26

Structure
What is stable in software development, as in any
culture, is the taxonomy of roles.

structure is embodied in roles

Roles and their relationships, form the structure of
the organisation.

.

Copyright © 2007 Symbian Software Ltd. Page: 27

Values
It is the structure that makes the organisation what it is.

but

structure comes from deeper values

Since values are notoriously difficult to elicit and to
‘’install’’ in an organisation, it is better to work at the
level of structure (which can also enable and attract values).

Copyright © 2007 Symbian Software Ltd. Page: 28

Organisational patterns
An organisational pattern captures a structure of a

successful organisation.

Organisational patterns can be described as
organisational structures (or configurations if you
prefer) that enable the people within them to be
highly productive.

(Structure == roles and their relationships)

Copyright © 2007 Symbian Software Ltd. Page: 29

Patterns of Productive Software Organisations
• Work started at Bell Labs, in the Pasteur research project circa

1991.

• Initial premise of the project, was that communication is key to
effective software development (as a social activity that it is).

• Therefore a view of the social structure, using social network
analysis tools is much more appropriate than ISO 9000
techniques and CMM.

• The plethora of these patterns are taken from masses of data
collected from studies conducted from Lucent Bell Labs over a
period of 3 years on 40 highly productive software
organisations.

• For about 12 years, this empirical research, that started by J. O
Coplien at Bell Labs, documented and analysed what works in
software production.

Copyright © 2007 Symbian Software Ltd. Page: 30

Beware!
• The organisational patterns in the book are a toolkit

• Not a dogma

• Not a fad

• Not a methodology

• Not a prescription

Organisational patterns capture what has worked
before. This knowledge cannot be ignored and is
there to be reused.

Copyright © 2007 Symbian Software Ltd. Page: 31

…from little seeds

We are satisfied by doing real work, Software is like a
plant that grows:

You can’t predict its exact shape or how big it will grow;
you can control its growth only to a limited degree.

There are no rules for this kind of thing – it’s never done
before.

-- Charlie Anderson, Architect, Borland Quattro Pro for Windows

Copyright © 2007 Symbian Software Ltd. Page: 32

Common Characteristics (of hyper productive organisations)

Keep Organisation Simple: Fewer roles in the organisation,
usually around 16 vs 21 others had

Work flows Inward: The role of the developer is in the centre were
information flows from producers of information to consumers of
information (developers). The role of the developer is thus
supported by the other roles.

Distribute Work Evenly: Don’t allow the focus on any developers
to become extreme, hence distribute communication around.

Iterate, Iterate! : For these organisations, the traditional waterfall
model of software development exists only on paper. Also
design and coding were inseparably inter-wined.

Compensate success: With celebrations and other reward
structures ;-)

Copyright © 2007 Symbian Software Ltd. Page: 33

Some of these patterns ...
1. Conway’s Law (organisation and architecture are isomorphic)

2. Organisation follows location (i.e Ronneby/ Quartz/ UIQ)

3. Size the Organisation (e.g 10 people ==60KSLOC in 8 months or
200KSLOC in 15)

4. Few roles (e.g., less than 16 – reduces communication
overhead)

5. Patron

6. Engage Customers

7. Self-selecting Team (NASA JPL do that)

8. Developers control process

9. Lock’em up together

Copyright © 2007 Symbian Software Ltd. Page: 34

Some more…
10. Upside down matrix management
11. Face to face before working remotely (i.e., PAN split between

Cambridge/London circa 2000)
12. Architect also Implements
13. Review the architecture
14. Group validation (e.g., CRC sessions, team debugging, team

review etc)
15. Stand-up meetings (e.g., stand-up room, SCRUM meetings)
16. Engage QA
17. Scenarios define problem (stories, not design documents ;-)
18. Work queue (e.g., SCRUM backlog, Lean, planning output is

smaller than input)
19. Mercenary analyst (Documentation is a distraction, and

someone is hired to take care of it)

Copyright © 2007 Symbian Software Ltd. Page: 35

Even more…
20. Named Stable Bases (a.k.a. release and mainline builds)

21. Incremental Integration

22. Early and regular delivery

23. Programming episodes (e.g., XP weekly iterations)

24. Private world (independent team development – i.e. dev-
branch)

25. Prototype

26. Skunk Works

27. Solo Virtuoso

28. Fire-Walls

29. Gate Keeper

30. Apprentice

31. Day Care (e.g., Boot Camp)

Copyright © 2007 Symbian Software Ltd. Page: 36

Still more…
32. Developing in pairs
33. Sacrifice one person (to sort out many small distractions)
34. Interrupts un-jam blocking
35. Don’t interrupt an interrupt
36. Recommitment meeting
37. Completion headroom
38. Take no small slips
39. Team per task
40. Public character
41. Community of trust
42. Unity of purpose
…and even more

Copyright © 2007 Symbian Software Ltd. Page: 37

…and my favourite is:
Wise Fool

Culture discourages troublemakers

But we grow through painful introspection

Nurture individuals who raise uncomfortable truths

• This is the person who points out that the emperor is wearing no
clothes!

• It is dangerous to be a Wise Fool (due to corporate Stalinism)

• In Shakespeare’s King Lear the Fool is the only one who has
any sense!

Copyright © 2007 Symbian Software Ltd. Page: 38

To probe further
• “A Pattern Language: Towns, Buildings,

Construction”, Christopher Alexander, 1978

• “The Timeless Way of Building”, Christopher
Alexander, 1980

• “Organizational Patterns of Agile Software
Development”, James O. Coplien, Neil B. Harrison,
2004

• Patterns of Productive Software Organizations,
http://www.lucent.com/minds/techjournal/summer
96/paper11/index.html

• www.pagonis.org

Copyright © 2007 Symbian Software Ltd. Page: 39

It’s true…

The End

Goodbye Symbian :-)

	Menu
	Why I am doing this
	Before we start… a word from the wise
	The Software Engineering Book Trilogy
	The Software Engineering Book Trilogy
	The Software Engineering Book Trilogy
	What is a pattern?
	What is a pattern?
	What is a pattern?
	Pattern form(s)
	Where did patterns come from?
	Patterns
	Patterns
	What is a pattern language ?
	Remember: there is no silver bullet
	Organisational improvement
	Organisational improvement
	Organisational improvement
	Change for improvement
	The chain of (organisational) change
	Change for improvement
	Structure
	Values
	Organisational patterns
	Patterns of Productive Software Organisations
	Beware!
	…from little seeds
	Common Characteristics (of hyper productive organisations)
	Some of these patterns ...
	Some more…
	Even more…
	Still more…
	…and my favourite is:
	To probe further
	It’s true…

