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John Pagonis
Symbian Developer Network

Good API Design 
And why it matters 

(a shameless rip-off of Bloch’s OT2004 Keynote:-)
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…from little seeds

We are satisfied by  doing real work, Software is like a 
plant that grows: 

You can’t predict its exact shape or how big it will grow; 
you can control its growth only to a limited degree. 

There are no rules for this kind of thing – it’s never done 
before.

-- Charlie Anderson, Architect,  Borland Quattro Pro for Windows
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Based on true stories

• This presentation is based on true stories

• The names have been changed to protect the guilty

• A lot of it has been re-used (lifted :-) from Joshua 
Bloch’s OT2004 keynote. I take responsibility for any 
additions or inaccuracies :-)

• I work for the Symbian Developer Network, where our 
job is to:
… Help developers, develop on Symbian OS

… We do it for free, therefore people talk to us

… Their truth is many times brutal
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Why is API Design Important?

• APIs can be among a company’s greatest assets
… Customers invest heavily: learning, writing, buying

… Cost to stop using an API can be prohibitive

… Successful public (and partner) APIs capture customers

• Can also be among a company’s greatest liabilities
… Bad APIs result in unending streams of support

… Bad APIs send developers away from a platform

… Bad APIs make developers build _bad_ code

… Bad APIs are not fun!!!

• Public APIs are FOREVER, one chance to get it right
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Why is API Design Vital to Symbian
• APIs and SPIs are part of what we offer, while others implement 

their plug-ins

• We offer a PLATFORM, people need to be able to (re-)use it! 
……..Hellloooooooooo

• Increasingly ‘’all we do’’ is to define APIs

• We are also brokers and mediators for competitors who bring 
their ‘’functionality’’ to a common base

• If anything, the APIs on which others build their products on, is 
our PRODUCT.

• Gates and Ballmer were right ...and I hate it when Bill is right
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How many times have you seen this?

plug-in framework

Internal Service Provider Interface

Server

Client/Server API

RSimple RComplexhacks

We define so many APIs for others to 
implement, or is it just me?
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Why is API Design Important to You?

• If you program you are an API designer
… Good code is modular – each module has an API

• Useful modules tend to get  reused
… Once a module has users, you can’t change API at will

… Good reusable modules are corporate assets

• Thinking in terms of APIs improves quality
… Because if you think of usage you think of testing

… Testing is good!  Reuse is good!

… If it is difficult to test then most likely it is difficult to (re-)use

… Therefore you won’t and you will not find the bugs!
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Characteristics of a Good API

• Easy to learn   (modulo domain specific expertise:-)

• Easy to use, even without documentation

• Hard to misuse – Very important!

• Easy to read and maintain code that uses it

• Sufficiently powerful to satisfy requirements

• Easy to extend – think BC :-)

• Appropriate to audience
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The Process of API Design

• Gather requirements – with a healthy degree of 
scepticism from its potential users

• Start with a short spec! - primitives

• Write to your API early and often

• Writing to SPI is even more Important

• Maintain realistic expectations
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Gather Requirements

• With a healthy degree of scepticism

• Not from a committee but from the real potential 
users!

• Your job is to extract true requirements from usage 
scenarios - reach out and find them

• Source the requirements by listening and observing 
what people do and try to do! – hint: newsgroups

• Do not listen to everyone, but ask for reviews
… If it is small you can extend it later

… But if it is ugly and complicated you’ll need to support it



John Pagonis, SDN Copyright © 2005-2006 Symbian Software Ltd. 11

Start with a short spec – 1 page is ideal 
• At this stage, agility trumps completeness

• Bounce spec off as many people as possible
… Listen to their input and take it seriously

… Remember ‘’Egoless Programming’’ (Weinberg)

• If you keep the spec short, it’s easy to modify

• Flesh it out as you gain confidence
… This necessarily involves CODING !!!

… ‘’Architect also implements’’ organisational pattern (Coplien) 

• Start by writing down ‘’primitives’’ in text!
… Responsibilities

… Clients

… Providers
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Write to your API Early and Often
• Start before you’ve implemented the API

… Saves you throwing away many implementations

• Start before you’ve even specified it properly
… Saves you from writing specs that you will throw away

… Plan to throw one away anyway (Brookes)

• Continue writing to API as you flesh it out
… Prevents nasty surprises at release time

… Your usage code will live as examples and unit tests

• ‘’Engage QA’’ organisational pattern  (Coplien)  
… Test engineers are the best to get in for review first !

Psisoft/Symbian used to do this because we used to write apps!! 
Therefore we used to refine our APIs and eat our own dog food 
early and often.
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Writing to SPI is Even More Important

• Service Provider Interface
… Interface supporting multiple implement(ors/ations)

… Example: all those interfaces to CSYs, TSYs, FSYs, PRTs, 
PSYs, NIF/NAFs..guffs etc

• Write multiple implementations before release
… If you write one, it probably won’t really support another

… If you write two, it will support more with difficulty

… If you write three, it will work fine

• Will Tracz calls this ‘’The Rule of Threes’’ 
(Confessions of a Used Program Salesman, 1995)
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Maintain Realistic Expectations

• Many API designs are over-constrained
… You won’t be able to please everyone

… Aim to displease everyone equally

• Many API designs are over-engineered 
… And not used :-(

• Expect to make mistakes
… A few years of real-world use will flush them out :-)

… Expect to evolve your APIs 

… Don’t change, extend and deprecate! 
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General Principles
• An API should do one thing and do it well

• Your APIs should be as small as possible, but no 
smaller

• Implementation(s) should not Impact the API

• Minimise accessibility of everything

• Names matter – every API is a little language

• Documentation matters

• Consider performance consequences of API design 
decisions

• APIs must coexist peacefully within the platform
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An API Should Do One Thing and Do It Well

• Functionality should be easy to explain
… If it is hard to name, that’s a bad sign

… Good names drive development

… Be amenable to splitting and merging modules

… Forget about the ‘’in case someone may..’’ cases and 
concentrate on known use cases

… If you have conflicting use cases then possibly you need 
two modules
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Your APIs Should Be As Small As Possible But 
No Smaller
• An API has to satisfy its requirements

• But, when in doubt, leave it out
… Functionality, classes, methods, parameters, etc

… You can always add, but you can never remove (something 
like ‘’Hotel California’’ kind of paradigm :-)

• Conceptual weight is more important than bulk

• Look for a good power-to-weight ratio
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Implementation(s) Should Not Impact the API

• Implementation details
… Confuse users

… Inhibit freedom to change the implementation

… Usually ruin BC,SC and even DC

• Be aware of what is an implementation detail
… Do not over-specify the behaviour of methods

… Do not return big ugly complicated structs!

… Use the ‘’Null Object’’ pattern (Bruce Anderson) don’t return 
NULL if it isn’t natural (i.e. User::Alloc)

• Don’t let implementation details ‘’leak’’ into APIs
… On-disk and on-the-wire formats
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Minimise Accessibility of Everything

• Make classes and members as private as possible

• Do not make them private though, because you are 
afraid someone ‘’may do something bad’’ with them!!! 
We have Platform Security for that!

• Maximise information hiding, so that you can change 
implementations easily, later

• Hide the private details in C++ headers by using 
idioms that help BC (that’s another seminar :-)
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Names Matter – Every API is a Little Language 

• Names should be largely self-explanatory
… Avoid cryptic abbreviations

… Use specific names for classes, but generic names for base 
classes

• Be consistent; same word should mean the same 
thing
… Throughout an API

… Across APIs on the platform

• Use correct parts of speech and your code will read 
like prose!
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Documentation Matters
• Document every public class, interface, method, parameter and 

exception
… Class: what an instance represents, intended use, intended 

clients, derivation intentions

… Method: contract between method and its client, pre-conditions, 
post-conditions, side effects

… Parameters: indicate ownership, units, show type

• For every internal class and method that needs it
… Do not document how it does something (unless it is something 

really esoteric or smart),  we have the source

… Document the ‘’whys’’, the ‘’whos’’ and the ‘’intentions’’, the source 
and naming should tell the story

… Good engineers go to the source (Coplien), documentation should 
show usage
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Consider Performance Consequences of API 
Design Decisions
• Bad decisions can limit performance

… Re-use sessions, don’t create them on each call

… If possible pre-alloc memory so that you don’t need to trap

… Let resources find you (Taligent), don’t create them 
temporarily

… Don’t return temporarily (copy) constructed objects

• Effects of API design decisions on performance are 
real and permanent
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APIs must Coexist Peacefully Within the Platform

• Do what is customary
… Obey standard naming convention

… Obey standard platform paradigms and idioms

… Mimic patterns in core APIs and language

• Take advantage of API-friendly features
… Use const descriptor references, pass around typed objects 

not plain TInts

• Know and avoid API traps and pitfalls
… e.g, TInt DoSomethingL(TSomething& aType, CStuff* aObj)

… (notable exception is OfferKeyEventL here :-)
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…from little seeds

We are satisfied by  doing real work, Software is like a 
plant that grows: 

You can’t predict its exact shape or how big it will grow; 
you can control its growth only to a limited degree. 

There are no rules for this kind of thing – it’s never done 
before.

-- Charlie Anderson, Architect,  Borland Quattro Pro for Windows
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