
John Pagonis, SDN Copyright © 2005-2006 Symbian Software Ltd. 1

John Pagonis
Symbian Developer Network

Good API Design
And why it matters

(a shameless rip-off of Bloch’s OT2004 Keynote:-)

John Pagonis, SDN Copyright © 2005-2006 Symbian Software Ltd. 2

…from little seeds

We are satisfied by doing real work, Software is like a
plant that grows:

You can’t predict its exact shape or how big it will grow;
you can control its growth only to a limited degree.

There are no rules for this kind of thing – it’s never done
before.

-- Charlie Anderson, Architect, Borland Quattro Pro for Windows

John Pagonis, SDN Copyright © 2005-2006 Symbian Software Ltd. 3

Based on true stories

• This presentation is based on true stories

• The names have been changed to protect the guilty

• A lot of it has been re-used (lifted :-) from Joshua
Bloch’s OT2004 keynote. I take responsibility for any
additions or inaccuracies :-)

• I work for the Symbian Developer Network, where our
job is to:
… Help developers, develop on Symbian OS

… We do it for free, therefore people talk to us

… Their truth is many times brutal

John Pagonis, SDN Copyright © 2005-2006 Symbian Software Ltd. 4

Why is API Design Important?

• APIs can be among a company’s greatest assets
… Customers invest heavily: learning, writing, buying

… Cost to stop using an API can be prohibitive

… Successful public (and partner) APIs capture customers

• Can also be among a company’s greatest liabilities
… Bad APIs result in unending streams of support

… Bad APIs send developers away from a platform

… Bad APIs make developers build _bad_ code

… Bad APIs are not fun!!!

• Public APIs are FOREVER, one chance to get it right

John Pagonis, SDN Copyright © 2005-2006 Symbian Software Ltd. 5

Why is API Design Vital to Symbian
• APIs and SPIs are part of what we offer, while others implement

their plug-ins

• We offer a PLATFORM, people need to be able to (re-)use it!
……..Hellloooooooooo

• Increasingly ‘’all we do’’ is to define APIs

• We are also brokers and mediators for competitors who bring
their ‘’functionality’’ to a common base

• If anything, the APIs on which others build their products on, is
our PRODUCT.

• Gates and Ballmer were right ...and I hate it when Bill is right

John Pagonis, SDN Copyright © 2005-2006 Symbian Software Ltd. 6

How many times have you seen this?

plug-in framework

Internal Service Provider Interface

Server

Client/Server API

RSimple RComplexhacks

We define so many APIs for others to
implement, or is it just me?

John Pagonis, SDN Copyright © 2005-2006 Symbian Software Ltd. 7

Why is API Design Important to You?

• If you program you are an API designer
… Good code is modular – each module has an API

• Useful modules tend to get reused
… Once a module has users, you can’t change API at will

… Good reusable modules are corporate assets

• Thinking in terms of APIs improves quality
… Because if you think of usage you think of testing

… Testing is good! Reuse is good!

… If it is difficult to test then most likely it is difficult to (re-)use

… Therefore you won’t and you will not find the bugs!

John Pagonis, SDN Copyright © 2005-2006 Symbian Software Ltd. 8

Characteristics of a Good API

• Easy to learn (modulo domain specific expertise:-)

• Easy to use, even without documentation

• Hard to misuse – Very important!

• Easy to read and maintain code that uses it

• Sufficiently powerful to satisfy requirements

• Easy to extend – think BC :-)

• Appropriate to audience

John Pagonis, SDN Copyright © 2005-2006 Symbian Software Ltd. 9

The Process of API Design

• Gather requirements – with a healthy degree of
scepticism from its potential users

• Start with a short spec! - primitives

• Write to your API early and often

• Writing to SPI is even more Important

• Maintain realistic expectations

John Pagonis, SDN Copyright © 2005-2006 Symbian Software Ltd. 10

Gather Requirements

• With a healthy degree of scepticism

• Not from a committee but from the real potential
users!

• Your job is to extract true requirements from usage
scenarios - reach out and find them

• Source the requirements by listening and observing
what people do and try to do! – hint: newsgroups

• Do not listen to everyone, but ask for reviews
… If it is small you can extend it later

… But if it is ugly and complicated you’ll need to support it

John Pagonis, SDN Copyright © 2005-2006 Symbian Software Ltd. 11

Start with a short spec – 1 page is ideal
• At this stage, agility trumps completeness

• Bounce spec off as many people as possible
… Listen to their input and take it seriously

… Remember ‘’Egoless Programming’’ (Weinberg)

• If you keep the spec short, it’s easy to modify

• Flesh it out as you gain confidence
… This necessarily involves CODING !!!

… ‘’Architect also implements’’ organisational pattern (Coplien)

• Start by writing down ‘’primitives’’ in text!
… Responsibilities

… Clients

… Providers

John Pagonis, SDN Copyright © 2005-2006 Symbian Software Ltd. 12

Write to your API Early and Often
• Start before you’ve implemented the API

… Saves you throwing away many implementations

• Start before you’ve even specified it properly
… Saves you from writing specs that you will throw away

… Plan to throw one away anyway (Brookes)

• Continue writing to API as you flesh it out
… Prevents nasty surprises at release time

… Your usage code will live as examples and unit tests

• ‘’Engage QA’’ organisational pattern (Coplien)
… Test engineers are the best to get in for review first !

Psisoft/Symbian used to do this because we used to write apps!!
Therefore we used to refine our APIs and eat our own dog food
early and often.

John Pagonis, SDN Copyright © 2005-2006 Symbian Software Ltd. 13

Writing to SPI is Even More Important

• Service Provider Interface
… Interface supporting multiple implement(ors/ations)

… Example: all those interfaces to CSYs, TSYs, FSYs, PRTs,
PSYs, NIF/NAFs..guffs etc

• Write multiple implementations before release
… If you write one, it probably won’t really support another

… If you write two, it will support more with difficulty

… If you write three, it will work fine

• Will Tracz calls this ‘’The Rule of Threes’’
(Confessions of a Used Program Salesman, 1995)

John Pagonis, SDN Copyright © 2005-2006 Symbian Software Ltd. 14

Maintain Realistic Expectations

• Many API designs are over-constrained
… You won’t be able to please everyone

… Aim to displease everyone equally

• Many API designs are over-engineered
… And not used :-(

• Expect to make mistakes
… A few years of real-world use will flush them out :-)

… Expect to evolve your APIs

… Don’t change, extend and deprecate!

John Pagonis, SDN Copyright © 2005-2006 Symbian Software Ltd. 15

General Principles
• An API should do one thing and do it well

• Your APIs should be as small as possible, but no
smaller

• Implementation(s) should not Impact the API

• Minimise accessibility of everything

• Names matter – every API is a little language

• Documentation matters

• Consider performance consequences of API design
decisions

• APIs must coexist peacefully within the platform

John Pagonis, SDN Copyright © 2005-2006 Symbian Software Ltd. 16

An API Should Do One Thing and Do It Well

• Functionality should be easy to explain
… If it is hard to name, that’s a bad sign

… Good names drive development

… Be amenable to splitting and merging modules

… Forget about the ‘’in case someone may..’’ cases and
concentrate on known use cases

… If you have conflicting use cases then possibly you need
two modules

John Pagonis, SDN Copyright © 2005-2006 Symbian Software Ltd. 17

Your APIs Should Be As Small As Possible But
No Smaller
• An API has to satisfy its requirements

• But, when in doubt, leave it out
… Functionality, classes, methods, parameters, etc

… You can always add, but you can never remove (something
like ‘’Hotel California’’ kind of paradigm :-)

• Conceptual weight is more important than bulk

• Look for a good power-to-weight ratio

John Pagonis, SDN Copyright © 2005-2006 Symbian Software Ltd. 18

Implementation(s) Should Not Impact the API

• Implementation details
… Confuse users

… Inhibit freedom to change the implementation

… Usually ruin BC,SC and even DC

• Be aware of what is an implementation detail
… Do not over-specify the behaviour of methods

… Do not return big ugly complicated structs!

… Use the ‘’Null Object’’ pattern (Bruce Anderson) don’t return
NULL if it isn’t natural (i.e. User::Alloc)

• Don’t let implementation details ‘’leak’’ into APIs
… On-disk and on-the-wire formats

John Pagonis, SDN Copyright © 2005-2006 Symbian Software Ltd. 19

Minimise Accessibility of Everything

• Make classes and members as private as possible

• Do not make them private though, because you are
afraid someone ‘’may do something bad’’ with them!!!
We have Platform Security for that!

• Maximise information hiding, so that you can change
implementations easily, later

• Hide the private details in C++ headers by using
idioms that help BC (that’s another seminar :-)

John Pagonis, SDN Copyright © 2005-2006 Symbian Software Ltd. 20

Names Matter – Every API is a Little Language

• Names should be largely self-explanatory
… Avoid cryptic abbreviations

… Use specific names for classes, but generic names for base
classes

• Be consistent; same word should mean the same
thing
… Throughout an API

… Across APIs on the platform

• Use correct parts of speech and your code will read
like prose!

John Pagonis, SDN Copyright © 2005-2006 Symbian Software Ltd. 21

Documentation Matters
• Document every public class, interface, method, parameter and

exception
… Class: what an instance represents, intended use, intended

clients, derivation intentions

… Method: contract between method and its client, pre-conditions,
post-conditions, side effects

… Parameters: indicate ownership, units, show type

• For every internal class and method that needs it
… Do not document how it does something (unless it is something

really esoteric or smart), we have the source

… Document the ‘’whys’’, the ‘’whos’’ and the ‘’intentions’’, the source
and naming should tell the story

… Good engineers go to the source (Coplien), documentation should
show usage

John Pagonis, SDN Copyright © 2005-2006 Symbian Software Ltd. 22

Consider Performance Consequences of API
Design Decisions
• Bad decisions can limit performance

… Re-use sessions, don’t create them on each call

… If possible pre-alloc memory so that you don’t need to trap

… Let resources find you (Taligent), don’t create them
temporarily

… Don’t return temporarily (copy) constructed objects

• Effects of API design decisions on performance are
real and permanent

John Pagonis, SDN Copyright © 2005-2006 Symbian Software Ltd. 23

APIs must Coexist Peacefully Within the Platform

• Do what is customary
… Obey standard naming convention

… Obey standard platform paradigms and idioms

… Mimic patterns in core APIs and language

• Take advantage of API-friendly features
… Use const descriptor references, pass around typed objects

not plain TInts

• Know and avoid API traps and pitfalls
… e.g, TInt DoSomethingL(TSomething& aType, CStuff* aObj)

… (notable exception is OfferKeyEventL here :-)

John Pagonis, SDN Copyright © 2005-2006 Symbian Software Ltd. 24

…from little seeds

We are satisfied by doing real work, Software is like a
plant that grows:

You can’t predict its exact shape or how big it will grow;
you can control its growth only to a limited degree.

There are no rules for this kind of thing – it’s never done
before.

-- Charlie Anderson, Architect, Borland Quattro Pro for Windows

John Pagonis, SDN Copyright © 2005-2006 Symbian Software Ltd. 25

References

• ‘’Taligent’s Guide to Designing Programs’’, Taligent
Inc

• ‘’The Psychology of Computer Programming’’, Gerald
M. Weinberg

• ‘’The Mythical Man-Month’’, Frederick P. Brookes Jr

• ‘’Organisational Patterns of Agile Software
Development’’, James O. Coplien, Neil B. Harrison

	…from little seeds
	Based on true stories
	Why is API Design Important?
	Why is API Design Vital to Symbian
	How many times have you seen this?
	Why is API Design Important to You?
	Characteristics of a Good API
	The Process of API Design
	Gather Requirements
	Start with a short spec – 1 page is ideal
	Write to your API Early and Often
	Writing to SPI is Even More Important
	Maintain Realistic Expectations
	General Principles
	An API Should Do One Thing and Do It Well
	Your APIs Should Be As Small As Possible But No Smaller
	Implementation(s) Should Not Impact the API
	Minimise Accessibility of Everything
	Names Matter – Every API is a Little Language
	Documentation Matters
	Consider Performance Consequences of API Design Decisions
	APIs must Coexist Peacefully Within the Platform
	…from little seeds
	References

