
New IPC Mechanisms for Symbian OS

By John Pagonis, February 2005
Version 1.1

Intro
In the following we examine the new Inter-Process Communication mechanisms
available to applications and servers in Symbian OS. Understanding when and how
these are required is essential in properly architecting components and making optimum
use of the OS capabilities. Each of these mechanisms has its own strengths and
limitations, so utilizing the right one will result in cleaner, more efficient programs that are
easier to understand and maintain.

Evolution of Symbian OS architecture
Symbian OS so far has offered semaphores, shared memory, mutexes and client/server
IPC mechanisms. Since the whole OS was architected from the ground up around
event-driven user-initiated interactions, the communication mechanism of choice for
most user-space components was client/server session-based IPC.

The focus has always been on providing responsiveness to human users, while enabling
many components and applications to share services and resources. These services
and resources were always accessed through user-side servers that mediated access to
them; hence the ubiquitous use of the client/server IPC.

Starting from the early 80s, Symbian OS and its 16-bit EPOC predecessor were
designed for people to use and interact with, as opposed to most if not all other
embedded and real time OSes out there, that have been used without UIs in data planes
or control systems. There was typically a lot of user-initiated I/O so CPU cycles were
precious and reserved for the user. In such an environment many applications were
using many services simultaneously and all interactions were asynchronous and non-
blocking, thus ensuring responsiveness for the user.

Current state with client/server session-based IPC
In the original and ubiquitous Symbian OS mechanism of client/server IPC, clients
connect to servers by name and first establish a session that then provides the context
for all further communication between clients and server. Such session-based
communication comprises of client requests and server responses. Within the kernel,
which mediates all messages, such request-responses are associated through session
objects. So that for each session the kernel delivers messages, which the server can
retrieve from its clients’ space (through kernel mediation), process and then return.
Finally, the server notifies the client that their request is complete. Due to its connection-
oriented session-based communication, client/server is a guaranteed request completion
mechanism.

For communication to take place in this way, a session has to first be established in the
kernel, with a guaranteed number of message slots for the server. This connection in
EKA1 is always synchronous as is the disconnection from the server. Session-based
communication ensures that all clients will be notified in the case of an error or shutdown
of a server, as well as that all resources will be cleared when something goes wrong or
when a client disconnects or dies.

This type of communication paradigm is good for when many clients need to reliably
access a service or shared resource concurrently. In that case the server serialises and
mediates access to the service accordingly. It is always the case where the clients will
have to initiate a connection to the server and the server is there to respond on demand;
thus their relation is one-to-one but not peer-to-peer.

Limitations
Although Symbian OS client/server IPC serves its lightweight micro-kernel based
architecture [1] well for client services, there are some limitations that may become
increasingly taxing as the platform grows in complexity and purpose. Symbian OS, as
was said, was created to serve mostly user-initiated I/O. As we have moved through to
always-connected communicating devices, many more interactions and much more I/O
are taking place that are not always user-initiated. For these the evolution of the
architecture caters in its latest versions of EKA1 and now in EKA2.

Such limitations are manifested in certain system-level usage scenarios of course, e.g.

• Clients must know which server provides the service they want.
• IPC requires that permanent sessions between clients and server is maintained.
• Potential for deadlocks due to synchronicity of session creation and teardown if

circular connections are formed.
• It is not really suitable for event multicasting.

• In general although delivery is guaranteed, there is no guarantee of real-time
deterministic delivery.

Beyond Client/Server Sessions
In order to overcome such limitations and enrich the IPC mechanisms to support more
paradigms of component interactions Symbian OS now (from Version 8.0) adds the
following:

• Publish & Subscribe
• Message Queues
• Shared Buffer I/O

These new mechanisms serve very well the porting of components from other
embedded and real-time OS as well as adding flexibility for refactored Symbian OS
components.

Publish & Subscribe
Publish & Subscribe (P&S), is a new IPC mechanism also known as ‘properties’ that
provides a means to define and publish system-wide ‘global variables’. Such properties
are communicated to more than one interested peer asynchronously.

This Publish & Subscribe API can be used by both user- and kernel-side programs, via
similar APIs, and thus can also provide asynchronous communication between user-
and kernel-side code. In the following only the user-side usage is discussed.

Threads with P&S may have the role either of the publisher or of the subscriber, while
anyone can be the one which defines the property to be published. Such properties are
single data values, uniquely identified with an integral key. Properties have identity and
type. The identity and type of a property is the only information that must be shared
between a Publisher and a Subscriber – there is no need to provide interface classes or
functions, though that may often be desirable in many designs.

There are six basic operations that can be performed on properties:

Define: Create a property variable and define its type and identity

Delete: Remove a property from the system

Publish: Change the value of a property

Retrieve: Get the current value of a property

Subscribe: Register for notification of changes to a property

Unsubscribe: Deregister for notifications of changes

Of these operations, the first two need to be coupled in the same thread, as it is only
permissible for the defining thread to delete a property. Once defined, the property
persists in the kernel until Symbian OS reboots or the property is deleted. Subsequently
its lifetime is not tied to that of the thread or process that defined it. When properties are
deleted any outstanding subscriptions for this property will be completed to the
subscribers, indicating that the properties cannot be found (anymore).

As said, either publishers or subscribers may define a property, so it is not required that
a property be defined before it is accessed. This paradigm allows for lazy definition of
properties, hence publishing a property that is not defined is not necessarily a
programming error.

For some operations such as publication and retrieval of properties, there are two modes
of transaction. Although P&S operations are as far as applicability is concerned
connection-less; in fact they can be used either transiently or after having set up the
association between user and property, in the kernel. Thus publishers and subscribers
may ‘attach’ to properties prior to operation.

Subsequently properties can be published or retrieved either by using a previously
attached handle, or by specifying the property category and key with the new value. In
EKA2 systems, the benefit of the former is the deterministic bounded execution time,
suitable for high-priority, real-time tasks; with the exception of publishing a byte-array
property that requires allocating a larger space for the new one.

In addition, properties are read and written atomically, so it is not possible for threads
reading the property to get an inconsistent value or multiple for simultaneous published
values to be confused.

As far as subscriptions and cancellations are concerned, clients of P&S must register
their interest, by attachment, prior to usage. This is due to the asynchronous nature of
the notification. For the kernel to recognize deterministically which threads need to be
notified of a change in some property, that interest needs to be first associated to the
property.

Notification of a property update happens in effectively four stages. Initially a client
registers its interest in that property. Then, upon a new publication of that property’s

value the client gets notified (by completion of its subscription request). Finally after
notification the client initiates the retrieval of the updated property.

Message Queues
Contrary to the connection-oriented nature of client/server IPC, message queues offer a
peer-to-peer many-to-many communication paradigm. With the Message Queue API,
threads may send messages to interested parties without needing to know if any thread
is listening. Moreover the identity of the recipient is not needed for such communication.

There are five basic operations that can be performed on a message queue.

• Creating/opening a message queue

• Sending a message

• Receiving a message

• Waiting for space to become available in the queue

• Waiting for data to arrive in the queue

In this IPC mechanism, threads send and receive messages to and from kernel-
managed objects that the queues are. In this manner messages are placed on to the
queues, which are dimensioned at the time of their creation. Subsequently queues may
run out of space, in which case senders can either block on sending or be notified that a
queue overflow would otherwise occur and thus be allowed to retry later. Writers have
therefore the choice, as to which message sending semantics to employ. Dimensioning
at the time of creation allows for real-time deterministic delivery of messages in EKA2,
for both sending and receiving of messages.

Message queues can either be named and globally visible to all processes, local to the
current process only, or anonymous but globally accessible. Global anonymous queues
(and their handle sharing between threads for that matter) are only applicable on EKA2.

Although it is also possible for queues to have multiple readers, such an arrangement in
most cases needs to be combined with some sort of out-of-band collaboration between
the reader threads.

Message queues effectively allow for fire-and-forget communication semantics between
threads. Readers are guaranteed the delivery of messages on to the queues, but
delivery to final recipients isn’t. Moreover, neither messages nor queues are persistent;
they are cleaned up when the last handle to the queue is closed. On message reception,
readers can either block indefinitely until a message arrives on to the queue or be
notified immediately if there is no message pending for reception, and thus retry later.

Both send and receive operations effectively copy the message structures to and from
the kernel while local queues can be used between threads of the same process to
communicate messages that point to memory mapped to their process; thus they
achieve better data throughput.

A thread may also discover from a queue whether it has space available to send it
messages as well as whether any messages are pending for delivery. Moreover a thread
can interrogate the queue as to its message size. Additionally a thread may choose to
wait on a queue until data or space become available.

With the Symbian OS Message Queue API, queues can also be typed so that it is
possible to send and receive messages of a specific type only. This paradigm allows for
type-safe IPC between participants without the overhead of type checking and the
potential errors that may arise.

In general, since the size of the messages that can be exchanged in this API is relatively
small (<256bytes), queues lend themselves nicely to timely event notification from many
sources to one recipient as well as for passing of memory descriptors and pointers
between threads in the same process. This latter usage can be employed effectively for
processing intensive and/or multimedia applications.

Shared Buffer I/O
Shared buffer I/O really deserves discussion similar to that of device drivers for EKA1
[2], but will not be discussed further in this text. This IPC mechanism is really intended
for device developers that need to communicate data from and to drivers.

In shared buffer I/O device drivers don’t need to have a buffer of their own, but can
share a buffer with a user space process. This arrangement allows the driver and its
client to access the same memory without copying, while it is safe to access the buffers
during interrupt handling.

Usage scenarios of the new IPC mechanisms
Below are presented some usage scenarios of how the new IPC mechanisms are likely
to prove of value.

Client/Server IPC
Client/server as an IPC mechanism has been discussed many times especially in
Symbian Press texts [3], [4]. Below is a graphical depiction of its usage for
completeness.

In the above outline, the client-server relation between participants is clear. The client
has to initiate requests that the server has to service. Moreover the server may receive
such requests from many clients, in which case requests will be serialised and answered
one at a time. There are no deterministic guarantees in this scenario and for every
communication channel a ‘connection’ has to be set up. This is a typical scenario for
when some kind of resource which has inherently serial access can be offered to many
clients simultaneously. Thus the server’s responsibilities are to mediate access to
resources through pre-defined service interfaces.

Publish & Subscribe
Publish and subscribe is probably the most important new IPC mechanism and the one
with the most impact. It was created to solve the problem of asynchronous multicast
event notification and to allow for connection-less communication between threads.

With this new API, interested parties do not need to know who the event provider is. This
design is essential in avoiding having many components knowing about many other
components and having to connect to them, just to discover and consume events. Thus
this API breaks the need to know and link to many client APIs; participants only need to
know about the P&S API and the properties they are interested in.

Producers and consumers of events can now dynamically join and leave the
‘conversation’ without any prior commitment or connection set-up between each other.
This paradigm lends itself perfectly to agent type scenarios, where both asynchronicity
and autonomy are essential. Architecturally, for developers, this is very significant since
their components can be designed and deployed without any prior knowledge of who
their consumers or producers may be; nor need they supply interfaces to them other
than the specification of the properties in question.

Effectively, as depicted above, publishers and subscribers are completely shielded from
each other. This is the reason why multicasting is so easy and comes for free.
Publication of events is referred to in this text as multicasting instead of broadcasting
because it doesn’t have by default to pollute the communication channels of every
thread should one not wish it to. Publish & Subscribe is the best paradigm to multicast
events to interested parties without needing to know explicitly who, where or how these
parties will receive these events, nor necessarily involving them if they’re not interested.

Accounting and resource management is handled by the kernel and thus the complexity
of usage is kept really low. Consequently in this mode of communication, messages are
not guaranteed in terms of their timely reception from remote parties, although delivery
to and from the kernel is guaranteed, as well as being real-time and deterministic (in the
case of EKA2). This is because remote parties may not even exist or be interested in the
communication, while there is no pre-defined way to know (other than out-of band
communication between the parties).

It is therefore advised that P&S should be used when a component needs to supply (or
consume) timely but transient information to an unknown number and kind of interested
parties, while maintaining maximum decoupling from them.

Such typical scenarios would be the dissemination of battery status information across
the system or the publication of the status of communication links. In general whenever
such contextual information is to be communicated across the system, P&S is the
paradigm to use.

Message Queues
Message Queues is an API that allows designers to break the connection while keeping
the communication between two or more threads. In that sense two threads may
communicate with one another without needing to set up connections to each other. This
in effect breaks the synchronicity in the setting up and tearing down of connections as
well as the rendezvous of these threads for such set-up to take place.

Breaking such connection synchronicity has many benefits for scenarios where
otherwise deadlocks would arise in using the client/server paradigm. Such deadlocks
manifest themselves during cancellation or set-up of sessions between clients to servers
which are themselves clients to other servers. Moreover this IPC is less alien to
developers porting from other OSes to Symbian OS, where similar mechanisms (such as
mailboxes) exist.

As outlined above, queues allow for many senders to communicate messages through a
queue. In effect the ultimate recipient of messages is not known in a global queue, since
any thread may read from it. Consequently, delivery to the final recipient is not
guaranteed. For this to be possible, participants have to agree on an implicit protocol
where a queue may be accessed from only one reader. This is Symbian’s
recommendation for this IPC for almost all cases. It has to be noted that messages are
sent to queues not to final recipient threads. Therefore messages don’t have any header
payload stating their final destination.

Symbian OS Message Queues are not pipes. To emulate pipes in Symbian OS using
the Message Queue API one has to build a protocol and abstractions on top of the API.
Since messages are anonymous and don’t have delivery addresses, queues may be
used as half-duplex pipes. It is down to the communicating threads to define this
protocol between them and set up the two queues necessary for peer-to-peer
communication between them.

When this is done, two threads may asynchronously communicate to each other without
necessarily linking to each other or client APIs other than the Message Queue one. This
is beneficial since (components and) threads become replaceable at run time to be

either senders or receivers of messages from a queue. Thus high availability services
can be offered and be serviced at run time without disrupting their clients.

Whereas P&S is excellent for notifications of state changes (that are inherently
transient), queues are good for allowing information to be communicated and transcend
the sender’s state or lifetime. For example a logging subsystem could utilise a queue to
receive messages from many threads that may or may not be still running at the point
where the messages are read and processed. In that sense a service provider in this
paradigm (as opposed to client/server) is not the one which mediates (and disseminates
data) from the resource, but the one which consumes them.

How to get started
You can make use of the new public IPC mechanisms, namely P&S and Message
Queues, using any C++ SDK based on Symbian OS v8.0 or higher (in particular the
recently released Nokia Series 60 2nd Edition SDK Supporting Feature Pack 2). The
APIs are extensively documented in the accompanying Symbian Developer Library, both
in the API Reference and in the Symbian OS Guide sections. Both of the APIs are
implemented in euser.dll, so no extra linking needs to be done. Note that since no SDKs
(or phones) have yet been released taking advantage of EKA2, you will not yet be able
to take advantage of the real-time guarantees referred to above.

In fact, although these APIs were introduced as part of Symbian OS v8.0 they were in
fact back-ported to the enhanced release of Symbian OS v7.0s, on which all Nokia
Series 80 and Series 90 2nd Edition SDKs were based, as well as all Series 60 2nd
Edition SDKs supporting Feature pack 1 or higher. All phones based thereon also of
course support the new IPC mechanisms; in practice this means all phones based on
Symbian OS v7.0s with the exception of the Nokia 6600. So you should be able to make
full use of the new IPC mechanisms working with the appropriate SDK. The one caveat
is that although all necessary headers and libs are available on the SDKs, the Version
7.0s Symbian Developer Library does not include documentation for the back-ported
APIs. You can however conveniently obtain the Version 8.0 Symbian Developer Library
from Symbian Developer Network.

References:
[1] ‘Crossing the Userland’, John Pagonis, Symbian Developer Network, March 2003,
http://www.symbian.com/developer/techlib/papers/userland/userland.pdf
[2] ‘Overview of Symbian OS Hardware Interrupt Handling’, John Pagonis, Symbian
Developer Network, March 2004,
http://www.symbian.com/developer/techlib/papers/HWinterupt/HwInterrupt.pdf
[3] ‘Symbian OS C++ for Mobile Phones’, Richard Harrison, 2003, Wiley
[4] ‘Symbian OS Explained’, Jo Stichbury, 2004, Wiley

http://www.symbian.com/developer/sdks_series80.asp
http://www.symbian.com/developer/sdks_series90.asp
http://www.symbian.com/developer/sdks_series60.asp
http://www.symbian.com/developer/techlib/sdl.html
http://www.symbian.com/developer/techlib/papers/userland/userland.pdf
http://www.symbian.com/developer/techlib/papers/HWinterupt/HwInterrupt.pdf

	New IPC Mechanisms for Symbian OS
	Intro
	Evolution of Symbian OS architecture
	Current state with client/server session-based IPC
	Limitations

	Beyond Client/Server Sessions
	Publish & Subscribe
	Message Queues
	Shared Buffer I/O

	Usage scenarios of the new IPC mechanisms
	Client/Server IPC
	Publish & Subscribe
	Message Queues

	How to get started
	References:

