

Ruby – the Gredia Port & How to Get Involved
John Pagonis, Pragmaticomm Limited

Published by the Symbian Developer Network

Version: 1.0 – March 2009

1 INTRODUCTION.. 2

2 ABOUT THE PORT ... 2
2.1 BACKGROUND .. 2
2.2 CURRENT STATUS OF THE RUBY VM ... 3

3 GETTING AND BUILDING THE PROJECT .. 4

4 DEPLOYING AND USING THE PORT.. 5

5 EMBEDDING RUBY 1.9.1 IN SYMBIAN C++ APPLICATIONS.. 6

6 EXTENDING THE RUBY 1.9.1 VM FOR SYMBIAN OS ... 6

7 HOW TO GET INVOLVED... 8

8 AUTHOR PROFILE ... 8

2

1 Introduction
This article discusses the background and philosophy of the GREDIA Ruby 1.9.1p0 Symbian OS
port and gives details of how to build, use and extend the Ruby 1.9.1 VM for Symbian OS. The
article targets Symbian C++ developers at intermediate level. This project also demonstrates how
to use P.I.P.S. for a major open source project (about 400K lines of source code), integrate it with
Symbian C++ and make use of Autoconf builds for Symbian OS/P.I.P.S.

2 About the Port

2.1 Background
Ruby1 has been of interest to Symbian developers for some time, since it comprises a language,
VM and plethora of libraries that make programming enjoyable, simple and extremely effective in
terms of developer productivity. Ruby as a language, according to its creator Yukihiro Matsumoto
(a.k.a. Matz), borrows from Smalltalk, Lisp, Eiffel, Perl and Ada. Matz’s aim was to ‘make the
language natural, not just simple’ and, as he says, ‘Ruby is simple in appearance, but is very
complex inside, just like our human body.’ By way of an example, consider the code below:

Output "I love Ruby"

say = "I love Ruby"

puts say

Output "I *LOVE* RUBY"

say['love'] = "*love*"

puts say.upcase

Output "I *love* Ruby"

five times

5.times { puts say }

Ruby was released to the public in 1995 and since then it has received mass acceptance. Ruby is
free to use, copy, modify, distribute and, in general, experiment with. Writing native extensions for
Ruby is simpler than in many other environments such as Java, Perl or Python, and this makes it
an ideal candidate to experiment with Symbian OS-specific APIs.

Ruby for Symbian OS v9.x was initiated by Roy Ben Hayun and John Pagonis in the spring of
2006. Later, as part of the SDN team, Roy ported Ruby 1.8 MRI (Matz's Ruby Interpreter) to
Symbian OS v9.1 in two and a half weeks, without the use of any POSIX-like APIs. Although the
port was missing several features, in a short time Ruby 1.8.5 was running successfully on mobile
phones such as the Nokia N80 and the Sony Ericsson P990. At the same time, others had also
started toying with the idea of Ruby for mobile phones, most notably a now defunct effort springing
from a ‘Google summer of code’ that same year.2

1 www.Ruby-lang.org
2 rubyforge.org/projects/ruby-symbian/

http://www.ruby-lang.org/
http://rubyforge.org/projects/ruby-symbian/

3

The current port of Ruby 1.9.1 on Symbian OS is being undertaken by Symbian Research as part
of an EU-funded mobile grid project called GREDIA.3 Part of Symbian Research's aim for the
project is to allow researchers to quickly prototype and develop grid-friendly web services on
Symbian OS devices. Pragmaticomm Limited was consulted and then contracted to create the port
and maintain it for the duration of the GREDIA project; this effort started in August 2007 before the
official developer release of Ruby 1.9.0 was released. Since then, there have been four major
releases of the port: the pre-1.9.0, 1.9.0, 1.9.1preview1 and finally the Ruby 1.9.1p0 port. (In the
Ruby world, a minor point release such as 1.9.0 denotes a release which is for Ruby language
developers only, whereas an odd one, such as 1.9.1, denotes that it is ready for public usage.) The
Ruby 1.9.1p0 Symbian OS port for the GREDIA project is available as an open source project and
it is hoped that it will be merged back with the core Ruby project soon.

In undertaking the port, the goal was to have a well integrated Ruby environment on Symbian OS,
so that users and developers can rapidly experiment with ideas on Symbian OS devices. To
achieve this, we needed both a good foundation to start with, which we found in the optimized,
multi-threaded YARV Ruby 1.9 VM, and a plethora of extensions that bring the capabilities of a
Symbian OS smartphone to Ruby.

Although the Ruby 1.8 MRI was much easier to port, using much less memory and therefore
debatably better suited to mobile phones, we wanted to rise to the challenge and bring the future of
Ruby and the new capabilities of Ruby 1.9 (and YARV) to Symbian OS as quickly as possible,
rather than linger with an old version.

As far as the author is aware, the Ruby 1.9.x VM port is the only VM on Symbian OS 9.x which is
actually multi-threaded, using native EKA2 threads;4 all other VMs on Symbian OS use green
threads.5

2.2 Current status of the Ruby VM
The philosophy adopted was to port the new Ruby 1.9 VM to Symbian OS with the minimum
amount of changes to the Ruby 1.9 VM codebase as possible. This was so that we could merge
and track Ruby developments easily and follow the future of Ruby, rather than fork the Ruby 1.9
VM for Symbian OS. To achieve this, the port made use of P.I.P.S. 1.1 through to P.I.P.S. 1.3 in
the early days, and later Open C 1.3, so that OpenSSL could be used.

Currently there are two ports, one for the WINSCW emulator and one for the GCCE Symbian OS
build environment. Having the VM ported to the emulator means that developers can write Ruby
programs on their desktops with ease and execute them on the emulator, thus allowing really rapid
development. Deploying Ruby programs on the device is also very easy using the PC Suite, which
allows them to be copied to the phone’s c:\data\ruby or e:\data\ruby default locations.

We chose the path of making the VM available to Symbian OS developers in such a way so that
they can not only create programs on Ruby, but also have the ability to easily embed Ruby inside
their Symbian C++ applications. This is to encourage multi-language programming and enable this
on Symbian OS devices. Ruby has been gaining ground in developing domain specific languages
and this is something that can now be realized on Symbian OS.

3 www.Gredia.eu
4 Harrison, Richard and Shackman, Mark (2007) Symbian OS C++ for Mobile Phones, Vol. 3
5 Green threads are scheduled by the Virtual Machine (VM) rather than natively by the operating system.

http://www.gredia.eu/
http://developer.symbian.com/main/documentation/books/books_files/scmp_v3/index.jsp

4

The Ruby project comprises three sub-projects: the VM, the VM launcher and a third which is an
application that embeds the VM inside it (this will be discussed later). All three, Ruby_VM.mmp,
Ruby_App.mmp and Ruby_S60.mmp respectively, are built via the symbian\group\bld.inf file.

The VM launcher’s responsibilities are to receive user input about which Ruby program to execute,
to launch the VM with that program information and to communicate user input and output to and
from the VM.

When the VM launcher gets the pathname of the Ruby program to execute from the user, it creates
a new process, inside which it starts the VM and passes to it the pathname of the program to
execute. From that point onwards, the VM and the VM launcher application communicate through
EKA2 message queues4. This communication takes place by sending characters between the two
processes on the message queues, therefore emulating what on UNIX would have been ‘stdio
streams’. In order to achieve this, the part of the Ruby VM that emits characters to ‘stdout’
(rb_write_internal) and the part that receives characters from ‘stdin’ (io_fillbuf) in the io.c
file had to be tweaked (for Symbian OS builds) so that they would communicate with the message
queues. Doing so allows any Symbian C++ control to potentially communicate with the VM directly
(or through the control stack). In the example Ruby_App, this is done very simply (and primitively)
in the CEikAppUi that sends the received characters to a CEikEdwin and the user key presses to
the VM.

The parts of the Ruby VM which are built and included in the final binary for each platform (apart
from the Win32 platform) are controlled by a GNU Autoconf process that outputs a config.h file.
This directs which conditional parts are compiled in the VM through the numerous #define
directives that are in all VM files. Consequently, the config.h identifies which CPU/OS attributes,
functionality and ‘UNIX-like’ APIs (using P.I.P.S.) are present on the platform. Where some
functionality is not present or not working, the VM either ignores it or replaces it with code found
under its \missing directory. For the Symbian OS port, all the files, including config.h, that are
generated from the Autoconf stage are stored under \symbian\generated, so that developers
don’t have to run Autoconf scripts (using cygwin or some other POSIX host) before they can build
the port (see Section 3 below).

3 Getting and Building the Project
To build and deploy the GREDIA Ruby 1.9.1p0 Symbian OS port, developers should install either
the Symbian OS v9.1/S60 3rd Edition MR or Symbian OS v9.2/S60 3rd Edition FP1 SDKs with
P.I.P.S. v1.3. To make use of the OpenSSL extension, Open C v1.3 is also needed. The port has
been developed and tested on the Nokia E90, E61/I, E51 and N95 and it should run on all S60 3rd
Edition MR and FP1 devices.

To get the code, you need to either use a Subversion6 client or download it from the
www.pragmaticomm.com/MobileRuby web site. To use a Subversion client, point it to
ella.pragmaticomm.com/svn/symbian-ruby/ and just download the head revision of the project.

There are two main stages to building Ruby 1.9.1p0. The first uses Autoconf which invokes all of
the Ruby core developer's make process, and needs to be applied only once per major release; the
auto-generated files for this port are pre-supplied in the 'symbian\generated' directory. The
second stage performs the builds for the Symbian OS GCCE and WINSCW platforms.

If you want to build from scratch and regenerate the auto-generated files sourcing from the
Autoconf stage, read the SYMBIAN.README file first. This stage should be seen as ‘reserved’ for
those who really change the language or the structure of the VM and for the maintainer of the port

6 subversion.tigris.org/

http://www.pragmaticomm.com/MobileRuby
https://ella.pragmaticomm.com/svn/symbian-ruby/
http://subversion.tigris.org/

5

who has to do it every time there is a major release. It’s not needed if you are only building the port
or adding extensions to it.

The following process is for the second stage only – for those who just want to build the source
tree and either fix bugs or add extensions – and shows how to build on a Win32 host from the
source:

1. Set up a Nokia S60 3rd Edition FP1 SDK (and optionally Carbide.c++ v2.0)

2. Download and install the Open C (this includes P.I.P.S. v1.3) plugin from: www.forum.
nokia.com/Resources_and_Information/Explore/Runtime_Platforms/Open_C_and_C++/

3. There is a known issue with a core Symbian OS header, e32def.h. To make it work with
Open C, go to line 2804 of %EPOCROOT%\include\e32def.h and place a conditional
compilation directive around the declaration, like this:

 #if defined(__cplusplus)

 static const char* const KSuppressPlatSecDiagnostic =

 KSuppressPlatSecDiagnosticMagicValue;

 #endif

4. Then you need to build as usual from the symbian\group directory by doing:

 bldmake clean

 bldmake bldfiles

 abld build <platform> <variant_build> Ruby_VM

 abld build <platform> <variant_build> Ruby_App

At the end of the build process, two binaries are built: the VM launcher application and the VM with
the TCP/IP, OpenSSL, digest, zlib and fnctl extensions. The MMP file reflects the different
components should you wish to separate them (for example, to add or remove extensions).

The VM is built by default with the localization files ascii.c, euc_jp.c, shift_jis.c, unicode.c,
us_ascii.c and utf_8.c for sizing reasons. Should you wish to add more, look for them in the
\enc directory of the main Ruby tree and add them in the Ruby_VM.mmp file.

The build scripts will also copy the files from the Ruby root directory's 'test' and 'lib' directories in
to your %EPOCROOT%epoc32\winscw\c\data\ruby\ ‘lib' and 'test' directories respectively.

4 Deploying and Using the Port
This section describes how to deploy and use the Ruby 1.9.1p0 port for the first time.

Following the build process outlined above, the symbian\sis folder will contain four PKG files;
these are:

• ruby-lib.pkg, for deploying all the pure Ruby libraries, as found in the <main Ruby
project path>\lib and \bin directories. This package is optional for someone that just
wants to program using the standard Ruby 1.9 libraries (which are built in the VM).

• ruby-test.pkg, the official Ruby regression tests.

• ruby.pkg, the VM and launcher.

• ruby_S60.pkg, an application that embeds the launcher and VM in one.

http://www.forum.nokia.com/Resources_and_Information/Explore/Runtime_Platforms/Open_C_and_C++/
http://www.forum.nokia.com/Resources_and_Information/Explore/Runtime_Platforms/Open_C_and_C++/

6

With this Ruby port (including all the current extensions) you can also build self-signed binaries by
calling createsis create for the PKG files. The resulting SIS files can then be installed on the
device. Remember to also install the Open C SIS files, apart from the stdioserver which is not
needed.

To try rapid Ruby development for Symbian OS on the desktop, use the emulator (WINSCW) build
and execute Ruby programs by running the Ruby VM launcher from the emulator. Ruby programs
can then be edited and executed in place from the %EPOCROOT%epoc32\winscw\c\data\ruby\
directory. To run a Ruby program from the Ruby VM launcher, simply select ‘Load and execute’
from the ‘Options’ menu, then give the full path of the program (such as
c:\data\ruby\getgoogle.rb).

5 Embedding Ruby 1.9.1 in Symbian C++ applications
There are two main ways to embed the Ruby VM in a Symbian C++ application. One is to simply
enter its main function by supplying it with the correct arguments inside the application’s main
thread (which may sound strange to non-Symbian C++ developers and in fact is not strictly legal
ISO C++) and the other is to spawn a separate thread and supply it with the correct thread function
to start the appropriate Ruby program.

The latter method is demonstrated in the CRuby_S60AppUi::VMThreadFunction() of the
application inside the symbian\src\Ruby_S60AppUi.cpp file. To communicate with the VM you
can set up local message queues. Embedding of Ruby is demonstrated in the Ruby_S60
application, which can be built by issuing:

abld build <platform> <variant_build> Ruby_S60

The Ruby_S60.mmp project file demonstrates how to build an application that embeds the Ruby VM
and its extension in one executable. Doing so makes launching of Ruby programs faster and
allows more control over the lifecycle of the Ruby VM thread, but currently has a caveat that
prevents the VM from being re-launched with a new program, due to the fact that the VM is
executed from its main function (which naturally assumes that it is launched in a new process
every time, and so all global writable static data are initialized to NULL).

Integration with any Symbian C++ application is fairly simple: user input and output (print, puts,
getc, gets, etc.) are available and not bound to any particular console implementation, and the
P.I.P.S./stdlib console is not required. File system access is available, as well as almost all Ruby
1.9 VM built-in classes and pure Ruby libraries (apart from some Process and signal related ones).

6 Extending the Ruby 1.9.1 VM for Symbian OS
Writing native extensions for Ruby is well documented by the core Ruby team in the README.EXT
file of the Ruby project.

By default, the official Ruby 1.9 VM project statically embeds certain extensions within the VM
(such as TCP/IP sockets and OpenSSL), whereas other extensions can be dynamically loaded.
The list of extensions that are statically linked with the VM is found in the ’ext\Setup’ file and for
some operating systems there are separate setup files too.

The Symbian OS port doesn’t use this Setup file mechanism at the moment but nevertheless
statically embeds all the extensions inside the VM binary (like the JVMs do for CLDC profiles).
This decision is only temporary and is due to (i) ease of debugging of extensions during porting
and (ii) the nature of the Symbian OS building process. All the extensions that are necessary for
the VM to be useful on a mobile device were ported and statically linked, and in fact were guided

7

by the list in the Setup file. Currently, a close inspection of Ruby’s r_call_inits in inits.c
shows that for Symbian OS builds we have statically added the initialization functions of all the
non-Symbian OS specific extensions that we have ported.

At the time of writing, Symbian Research are releasing two very interesting Symbian OS-specific
Ruby 1.9 VM extensions that demonstrate how to bring native APIs to Ruby. One is for accessing
the battery and signal strength, which bridges to ETel, and the other gets a simple location fix from
the on-device GPS. These two extensions, ELoc and ETel, are not currently built by default as part
of the project, but can be found in the ext\etel and ext\eloc directories respectively. Note that
including the ELoc extension with the VM will prevent self-signing for pre-FP2 SDKs. Nevertheless,
these extensions demonstrate how easy is to use Symbian OS features from Ruby and what the
potential for developer productivity is.

For example, consider the following code snippet that obtains the battery and signal strength
levels:

battery = ETelephony::battery_level

signal = ETelephony::signal_strength

printf "Battery: %d(%d)\nSignal: %d(%d)\n",

 battery[0], battery[1], signal[0], signal[1]

In the above snippet, the [0] values are the raw values from the hardware, expressed as a
percentage, while the [1] values indicate the number of bars to display, in the case of signal
strength and the charging status in the battery case (0 = unknown, 1 = battery being used, 2 = on
external power, 3 = no battery present, 4 = fault).

A more advanced but still very short and powerful Ruby program for Symbian OS may look like the
following, which is taken from the LBS API extensions example developed by Symbian Research.

require "ELocation"

position = "%d latitude, %d longitude, and %d altitude" %

 ELocation::last_known_position.map! { |x| x*1000 }

puts "Last known position is: %s" % position

Current position with default 10s timeout

loc = ELocation::current_position

if loc

position = "%d latitude, %d longitude, and %d altitude" % loc.map! { |x| x*1000 }

 puts "Current position is: %s" % position

else

 puts "Timeout"

end

Current position with 0.5s timeout

loc = ELocation::current_position(500)

if loc

position = "%d latitude, %d longitude, and %d altitude" % loc.map! { |x| x*1000 }

 puts "Current position is: %s" % position

else

 puts "Timeout"

end

8

7 How to Get Involved
There are at least five main ways to get involved and help with the Ruby 1.9 port for Symbian OS:

• Run as many of the core Ruby regression tests as possible on your Symbian OS device
and report your findings. To run the tests, install the ruby-test.sis application on the
device together with all other relevant SIS files, go to the c:data\ruby\test directory and
run tests or create your own. You can submit reports on the Symbian Ruby mailing list
(ruby@Symbian.com), or ask Pragmaticomm (symbian-ruby@pragmaticomm.com) for a
read-write software configuration management account and the issue tracking system that
Pragmaticomm have set up.

• Submit fixes to problems you find for the port.

• Develop or extend the existing Symbian OS extensions. Start by looking in the Ruby \ext
directory for extensions specific to Symbian OS, such as ELoc.

• Port more of the existing Ruby 1.9 VM extensions to Symbian OS.

• Translate any of the port documentation, bug reports, etc., to Japanese!

The effort for the port was supported by the GREDIA project so far but it needs to continue beyond
that, which can only happen if Symbian OS developers embrace the project and contribute back.
The potential for extending the Ruby VM capabilities on Symbian OS is endless and with this Ruby
port, developers don’t have to ask for permission from anyone to do so for their own projects. The
Ruby 1.9 VM is also a very capable virtual machine implementation that gives developers, possibly
for the first time, the chance to experiment with VMs on mobile phones without a huge cost or
learning curve. Therefore, even as an educational (if not commercial) tool, the Ruby VM port for
Symbian OS has tremendous value.

8 Author Profile
John Pagonis has been working for about 11 years in the mobile telecoms industry at Ericsson,
Symbian Ltd and Pragmaticomm Limited, engineering the software that powers modern, advanced
mobile phones.

In the domain of mobile phones, John's experience ranges from communication protocols and
infrastructure, security, location-based services, operating systems and middleware design, to
software engineering methodologies, developer consulting, team coaching and organizational
improvements. John has authored several articles for the SDN and has been a contributing author
for both volume 2 and volume 3 of Symbian OS C++ for Mobile Phones.4 He has been a visiting
lecturer at City University in London and holds an MSc(Hons.) in Computer and Information
Networks and a BEng(Hons.) in Computer and Networks, both from the University of Essex
Electronics Systems Engineering department.

	1 Introduction
	2 About the Port
	2.1 Background
	2.2 Current status of the Ruby VM

	3 Getting and Building the Project
	4 Deploying and Using the Port
	5 Embedding Ruby 1.9.1 in Symbian C++ applications
	6 Extending the Ruby 1.9.1 VM for Symbian OS
	7 How to Get Involved
	8 Author Profile

